These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 11031606)
1. Wave number of maximal growth in viscous magnetic fluids of arbitrary depth. Lange A; Reimann B; Richter R Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 May; 61(5B):5528-39. PubMed ID: 11031606 [TBL] [Abstract][Full Text] [Related]
2. Edge pinch instability of liquid metal sheet in a transverse high-frequency ac magnetic field. Priede J; Etay J; Fautrelle Y Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066303. PubMed ID: 16906972 [TBL] [Abstract][Full Text] [Related]
3. Density-driven instabilities of variable-viscosity miscible fluids in a capillary tube. Meiburg E; Vanaparthy SH; Payr MD; Wilhelm D Ann N Y Acad Sci; 2004 Nov; 1027():383-402. PubMed ID: 15644370 [TBL] [Abstract][Full Text] [Related]
4. Band instability in near-critical fluids subjected to vibration under weightlessness. Lyubimova T; Ivantsov A; Garrabos Y; Lecoutre C; Gandikota G; Beysens D Phys Rev E; 2017 Jan; 95(1-1):013105. PubMed ID: 28208391 [TBL] [Abstract][Full Text] [Related]
5. Rayleigh-Taylor instability of viscous fluids with phase change. Kim BJ; Kim KD Phys Rev E; 2016 Apr; 93():043123. PubMed ID: 27176406 [TBL] [Abstract][Full Text] [Related]
6. Finite-size effects on pattern selection in immiscible fluids subjected to horizontal vibrations in weightlessness. Salgado Sánchez P; Gaponenko YA; Porter J; Shevtsova V Phys Rev E; 2019 Apr; 99(4-1):042803. PubMed ID: 31108636 [TBL] [Abstract][Full Text] [Related]
7. Mesh-free distributed point source method for modeling viscous fluid motion between disks vibrating at ultrasonic frequency. Wada Y; Kundu T; Nakamura K J Acoust Soc Am; 2014 Aug; 136(2):466-74. PubMed ID: 25096081 [TBL] [Abstract][Full Text] [Related]
8. Rayleigh-Taylor instability for immiscible fluids of arbitrary viscosities: a magnetic levitation investigation and theoretical model. Carlès P; Huang Z; Carbone G; Rosenblatt C Phys Rev Lett; 2006 Mar; 96(10):104501. PubMed ID: 16605739 [TBL] [Abstract][Full Text] [Related]
9. Pattern and wave number selection in magnetic fluids. Friedrichs R; Engel A Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 1):021406. PubMed ID: 11497581 [TBL] [Abstract][Full Text] [Related]
10. Instability of viscous flow over a deformable two-layered gel: experiments and theory. Neelamegam R; Giribabu D; Shankar V Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):043004. PubMed ID: 25375591 [TBL] [Abstract][Full Text] [Related]
12. Mean force on a finite-sized spherical particle due to an acoustic field in a viscous compressible medium. Annamalai S; Balachandar S; Parmar MK Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053008. PubMed ID: 25353881 [TBL] [Abstract][Full Text] [Related]
13. Faraday Instability in Viscous Fluids Covered with Elastic Polymer Films. Liu J; Song W; Ma G; Li K Polymers (Basel); 2022 Jun; 14(12):. PubMed ID: 35745910 [TBL] [Abstract][Full Text] [Related]
14. Theoretical and numerical calculations for the time-averaged acoustic force and torque acting on a rigid cylinder of arbitrary size in a low viscosity fluid. Wang J; Dual J J Acoust Soc Am; 2011 Jun; 129(6):3490-501. PubMed ID: 21682376 [TBL] [Abstract][Full Text] [Related]
15. Electric-field-induced interfacial instabilities of a soft elastic membrane confined between viscous layers. Dey M; Bandyopadhyay D; Sharma A; Qian S; Joo SW Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041602. PubMed ID: 23214594 [TBL] [Abstract][Full Text] [Related]
16. Viscous Wave Breaking and Ligament Formation in Microfluidic Systems. Hu X; Cubaud T Phys Rev Lett; 2018 Jul; 121(4):044502. PubMed ID: 30095958 [TBL] [Abstract][Full Text] [Related]
17. Faraday instability on viscous ferrofluids in a horizontal magnetic field: oblique rolls of arbitrary orientation. Mekhonoshin VV; Lange A Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 1):061509. PubMed ID: 12188734 [TBL] [Abstract][Full Text] [Related]
18. Passive manipulation of free-surface instability by deformable solid bilayers. Sahu S; Shankar V Phys Rev E; 2016 Jul; 94(1-1):013111. PubMed ID: 27575221 [TBL] [Abstract][Full Text] [Related]
19. Viscous fingering in packed chromatographic columns: linear stability analysis. Rousseaux G; De Wit A; Martin M J Chromatogr A; 2007 May; 1149(2):254-73. PubMed ID: 17420024 [TBL] [Abstract][Full Text] [Related]
20. Low-Reynolds-number swimmer utilizing surface traveling waves: analytical and experimental study. Setter E; Bucher I; Haber S Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066304. PubMed ID: 23005203 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]