These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 11031618)

  • 1. Exact equations and scaling relations for f0 avalanche in the Bak-Sneppen evolution model.
    Li W; Cai X
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 May; 61(5 Pt B):5630-3. PubMed ID: 11031618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different hierarchy of avalanches observed in the bak-sneppen evolution model.
    Li W; Cai X
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jan; 61(1):771-5. PubMed ID: 11046321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bak-sneppen model near zero dimension.
    Dorogovtsev SN; Mendes JF; Pogorelov YG
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jul; 62(1 Pt A):295-8. PubMed ID: 11088462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analytic results for scaling function and moments for a different type of avalanche in the bak-sneppen evolution model.
    Li W; Cai X
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Dec; 62(6 Pt A):7743-7. PubMed ID: 11138047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Random networks created by biological evolution.
    Slanina F; Kotrla M
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Nov; 62(5 Pt A):6170-7. PubMed ID: 11101948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Universal pulse shape scaling function and exponents: critical test for avalanche models applied to Barkhausen noise.
    Mehta AP; Mills AC; Dahmen KA; Sethna JP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2A):046139. PubMed ID: 12005958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fitness noise in the Bak-Sneppen evolution model in high dimensions.
    Chhimpa R; Singh A; Yadav AC
    Phys Rev E; 2024 Sep; 110(3-1):034130. PubMed ID: 39425441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. dc = 4 is the upper critical dimension for the Bak-Sneppen model.
    Boettcher S; Paczuski M
    Phys Rev Lett; 2000 Mar; 84(10):2267-70. PubMed ID: 11017260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proof of breaking of self-organized criticality in a nonconservative abelian sandpile model.
    Tsuchiya T; Katori M
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Feb; 61(2):1183-8. PubMed ID: 11046392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic critical approach to self-organized criticality.
    Laneri K; Rozenfeld AF; Albano EV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 2):065105. PubMed ID: 16485999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Levy-nearest-neighbors Bak-Sneppen model.
    Cafiero R; De Los Rios P; Valleriani A; Vega JL
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Aug; 60(2 Pt A):R1111-4. PubMed ID: 11969930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bak-Tang-Wiesenfeld model in the upper critical dimension: Induced criticality in lower-dimensional subsystems.
    Dashti-Naserabadi H; Najafi MN
    Phys Rev E; 2017 Oct; 96(4-1):042115. PubMed ID: 29347586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Avalanche dynamics, surface roughening, and self-organized criticality: Experiments on a three-dimensional pile of rice.
    Aegerter CM; Günther R; Wijngaarden RJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 1):051306. PubMed ID: 12786145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Infinite Series of Exact Equations in the Bak-Sneppen Model of Biological Evolution.
    Maslov S
    Phys Rev Lett; 1996 Aug; 77(6):1182-1185. PubMed ID: 10063011
    [No Abstract]   [Full Text] [Related]  

  • 15. Crack roughness and avalanche precursors in the random fuse model.
    Zapperi S; Nukala PK; Simunović S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026106. PubMed ID: 15783377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coevolutionary dynamics on scale-free networks.
    Lee S; Kim Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):057102. PubMed ID: 16089695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extremal dynamics on complex networks: analytic solutions.
    Masuda N; Goh KI; Kahng B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 2):066106. PubMed ID: 16486009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning coupling: discrete changes in runaway avalanche sizes in disordered media.
    Brinkman BA; Dahmen KA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 1):041129. PubMed ID: 22181109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Langevin equations for competitive growth models.
    Silveira FA; Aarão Reis FD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011601. PubMed ID: 22400575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boundary spatiotemporal correlations in a self-organized critical model of punctuated equilibrium.
    Montevecchi E; Stella AL
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jan; 61(1):293-7. PubMed ID: 11046266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.