BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 11031741)

  • 1. [Pharmacology of the glutamate receptor].
    Shinozaki H
    Nihon Yakurigaku Zasshi; 2000 Sep; 116(3):125-31. PubMed ID: 11031741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potentiation by DL-alpha-aminopimelate of the inhibitory action of a novel mGluR agonist (L-F2CCG-I) on monosynaptic excitation in the rat spinal cord.
    Saitoh T; Ishida M; Shinozaki H
    Br J Pharmacol; 1998 Feb; 123(4):771-9. PubMed ID: 9517398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of uptake and release of a novel mGluR agonist (L-F2CCG-I) by anion transport blockers in the rat spinal cord.
    Ishida M; Shinozaki H
    Neuropharmacology; 1999 Oct; 38(10):1531-41. PubMed ID: 10530815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective metabotropic receptor agonists distinguish non-ionotropic glutamate binding sites.
    Testa CM; Hollingsworth ZR; Shinozaki H; Penney JB; Young AB
    Brain Res; 1997 Oct; 773(1-2):15-27. PubMed ID: 9409700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel metabotropic glutamate receptor agonist: marked depression of monosynaptic excitation in the newborn rat isolated spinal cord.
    Ishida M; Saitoh T; Shimamoto K; Ohfune Y; Shinozaki H
    Br J Pharmacol; 1993 Aug; 109(4):1169-77. PubMed ID: 8401927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excitatory amino acids: physiological and pharmacological probes for neuroscience research.
    Shinozaki H; Ishida M
    Acta Neurobiol Exp (Wars); 1993; 53(1):43-51. PubMed ID: 8317271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Pharmacology of excitatory amino acid receptors].
    Shinozaki H
    Yakubutsu Seishin Kodo; 1992 Apr; 12(2):55-65. PubMed ID: 1359719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anticonvulsive and neuroprotective actions of a potent agonist (DCG-IV) for group II metabotropic glutamate receptors against intraventricular kainate in the rat.
    Miyamoto M; Ishida M; Shinozaki H
    Neuroscience; 1997 Mar; 77(1):131-40. PubMed ID: 9044381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuron damage induced by some potent kainoids and neuroprotective action of new agonists for metabotropic glutamate receptors.
    Shinozaki H
    Eur Neurol; 1994; 34 Suppl 3():2-9. PubMed ID: 7821331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in preference for receptor subtypes of configurational variants of a glutamate analog: conversion from the NMDA-type to the non-NMDA type.
    Ishida M; Ohfune Y; Shimada Y; Shimamoto K; Shinozaki H
    Brain Res; 1991 May; 550(1):152-6. PubMed ID: 1653635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmacological characterization of the metabotropic glutamate receptor inhibiting D-[3H]-aspartate output in rat striatum.
    Lombardi G; Alesiani M; Leonardi P; Cherici G; Pellicciari R; Moroni F
    Br J Pharmacol; 1993 Dec; 110(4):1407-12. PubMed ID: 8306080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. L-CCG-I activates group III metabotropic glutamate receptors in the hippocampal CA3 region.
    Kirschstein T; von der Brelie C; Steinhäuser M; Vinçon A; Beck H; Dietrich D
    Neuropharmacology; 2004 Aug; 47(2):157-62. PubMed ID: 15223294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A marked increase in intracellular Ca2+ concentration induced by acromelic acid in cultured rat spinal neurons.
    Ogata T; Nakamura Y; Tsuji K; Shibata T; Kataoka K; Ishida M; Shinozaki H
    Neuropharmacology; 1994 Sep; 33(9):1079-85. PubMed ID: 7838320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regional distribution and pharmacological characteristics of [3H]N-acetyl-aspartyl-glutamate (NAAG) binding sites in rat brain.
    Shave E; Pliss L; Lawrance ML; FitzGibbon T; Stastny F; Balcar VJ
    Neurochem Int; 2001 Jan; 38(1):53-62. PubMed ID: 10913688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The activation of glutamate receptors by kainic acid and domoic acid.
    Hampson DR; Manalo JL
    Nat Toxins; 1998; 6(3-4):153-8. PubMed ID: 10223631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuroprotection by metabotropic glutamate receptor agonists on kainate-induced degeneration of motor neurons in spinal cord slices from adult rat.
    Pizzi M; Benarese M; Boroni F; Goffi F; Valerio A; Spano PF
    Neuropharmacology; 2000 Mar; 39(5):903-10. PubMed ID: 10699456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutamate receptor agonists modulate [Ca2+]i in isolated rat melanotropes.
    Giovannucci DR; Stuenkel EL
    Neuroendocrinology; 1995 Aug; 62(2):111-22. PubMed ID: 8584110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of kainic acid/AMPA and metabotropic glutamate receptors in the regulation of opioid mRNA expression and the onset of pain-related behavior following excitotoxic spinal cord injury.
    Abraham KE; McGinty JF; Brewer KL
    Neuroscience; 2001; 104(3):863-74. PubMed ID: 11440816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pharmacological characterization of metabotropic glutamate receptor-mediated high-affinity GTPase activity in rat cerebral cortical membranes.
    Nishi N; Odagaki Y; Koyama T
    Br J Pharmacol; 2000 Aug; 130(7):1664-70. PubMed ID: 10928972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of metabotropic glutamate receptor agonists and antagonists on D-aspartate release from mouse cerebral cortical and striatal slices.
    Janáky R; Dohovics R; Hermann A; Oja SS; Saransaari P
    Neurochem Res; 2001 Nov; 26(11):1217-24. PubMed ID: 11874203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.