These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 11032036)

  • 1. Efficient event-driven simulation of large networks of spiking neurons and dynamical synapses.
    Mattia M; Del Giudice P
    Neural Comput; 2000 Oct; 12(10):2305-29. PubMed ID: 11032036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning real-world stimuli in a neural network with spike-driven synaptic dynamics.
    Brader JM; Senn W; Fusi S
    Neural Comput; 2007 Nov; 19(11):2881-912. PubMed ID: 17883345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the performance of voltage stepping for the simulation of adaptive, nonlinear integrate-and-fire neuronal networks.
    Kaabi MG; Tonnelier A; Martinez D
    Neural Comput; 2011 May; 23(5):1187-204. PubMed ID: 21299420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accelerating event-driven simulation of spiking neurons with multiple synaptic time constants.
    D'Haene M; Schrauwen B; Van Campenhout J; Stroobandt D
    Neural Comput; 2009 Apr; 21(4):1068-99. PubMed ID: 18928367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning in realistic networks of spiking neurons and spike-driven plastic synapses.
    Mongillo G; Curti E; Romani S; Amit DJ
    Eur J Neurosci; 2005 Jun; 21(11):3143-60. PubMed ID: 15978023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Event-driven simulation scheme for spiking neural networks using lookup tables to characterize neuronal dynamics.
    Ros E; Carrillo R; Ortigosa EM; Barbour B; Agís R
    Neural Comput; 2006 Dec; 18(12):2959-93. PubMed ID: 17052155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analytical integrate-and-fire neuron models with conductance-based dynamics for event-driven simulation strategies.
    Rudolph M; Destexhe A
    Neural Comput; 2006 Sep; 18(9):2146-210. PubMed ID: 16846390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptic dynamics: linear model and adaptation algorithm.
    Yousefi A; Dibazar AA; Berger TW
    Neural Netw; 2014 Aug; 56():49-68. PubMed ID: 24867390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity.
    Indiveri G; Chicca E; Douglas R
    IEEE Trans Neural Netw; 2006 Jan; 17(1):211-21. PubMed ID: 16526488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting spike times of a detailed conductance-based neuron model driven by stochastic spike arrival.
    Jolivet R; Gerstner W
    J Physiol Paris; 2004; 98(4-6):442-51. PubMed ID: 16274972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification of correlated patterns with a configurable analog VLSI neural network of spiking neurons and self-regulating plastic synapses.
    Giulioni M; Pannunzi M; Badoni D; Dante V; Del Giudice P
    Neural Comput; 2009 Nov; 21(11):3106-29. PubMed ID: 19686067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic stochastic synapses as computational units.
    Maass W; Zador AM
    Neural Comput; 1999 May; 11(4):903-17. PubMed ID: 10226188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spike-driven synaptic plasticity: theory, simulation, VLSI implementation.
    Fusi S; Annunziato M; Badoni D; Salamon A; Amit DJ
    Neural Comput; 2000 Oct; 12(10):2227-58. PubMed ID: 11032032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity.
    Florian RV
    Neural Comput; 2007 Jun; 19(6):1468-502. PubMed ID: 17444757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Propagation delays determine neuronal activity and synaptic connectivity patterns emerging in plastic neuronal networks.
    Madadi Asl M; Valizadeh A; Tass PA
    Chaos; 2018 Oct; 28(10):106308. PubMed ID: 30384625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of synaptic facilitation in spike coincidence detection.
    Mejías JF; Torres JJ
    J Comput Neurosci; 2008 Apr; 24(2):222-34. PubMed ID: 17674172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Including long-range dependence in integrate-and-fire models of the high interspike-interval variability of cortical neurons.
    Jackson BS
    Neural Comput; 2004 Oct; 16(10):2125-95. PubMed ID: 15333210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exact simulation of integrate-and-fire models with synaptic conductances.
    Brette R
    Neural Comput; 2006 Aug; 18(8):2004-27. PubMed ID: 16771661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The chronotron: a neuron that learns to fire temporally precise spike patterns.
    Florian RV
    PLoS One; 2012; 7(8):e40233. PubMed ID: 22879876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spike train statistics and dynamics with synaptic input from any renewal process: a population density approach.
    Ly C; Tranchina D
    Neural Comput; 2009 Feb; 21(2):360-96. PubMed ID: 19431264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.