These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 11032349)

  • 1. Cross-bridge movement and stiffness during the rise of tension in skeletal muscle--a theoretical analysis.
    Månsson A
    J Muscle Res Cell Motil; 2000 May; 21(4):383-403. PubMed ID: 11032349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of ionic strength on the kinetics of rigor development in skinned fast-twitch skeletal muscle fibres.
    Veigel C; von Maydell RD; Kress KR; Molloy JE; Fink RH
    Pflugers Arch; 1998 May; 435(6):753-61. PubMed ID: 9518502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of cross-bridge elasticity and kinetics of cross-bridge cycling during force development in single smooth muscle cells.
    Warshaw DM; Rees DD; Fay FS
    J Gen Physiol; 1988 Jun; 91(6):761-79. PubMed ID: 3047311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A cross-bridge mechanism can explain the thixotropic short-range elastic component of relaxed frog skeletal muscle.
    Campbell KS; Lakie M
    J Physiol; 1998 Aug; 510 ( Pt 3)(Pt 3):941-62. PubMed ID: 9660904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of Ca2+ and cross-bridges in skeletal muscle thin filament activation probed with Ca2+ sensitizers.
    Wahr PA; Metzger JM
    Biophys J; 1999 Apr; 76(4):2166-76. PubMed ID: 10096910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rate constant of muscle force redevelopment reflects cooperative activation as well as cross-bridge kinetics.
    Campbell K
    Biophys J; 1997 Jan; 72(1):254-62. PubMed ID: 8994610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Do cross-bridges contribute to the tension during stretch of passive muscle?
    Proske U; Morgan DL
    J Muscle Res Cell Motil; 1999 Aug; 20(5-6):433-42. PubMed ID: 10555062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altered kinetics of contraction in skeletal muscle fibers containing a mutant myosin regulatory light chain with reduced divalent cation binding.
    Diffee GM; Patel JR; Reinach FC; Greaser ML; Moss RL
    Biophys J; 1996 Jul; 71(1):341-50. PubMed ID: 8804617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A cross-bridge based model of force depression: Can a single modification address both transient and steady-state behaviors?
    Corr DT; Herzog W
    J Biomech; 2016 Mar; 49(5):726-734. PubMed ID: 26928777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variations in cross-bridge attachment rate and tension with phosphorylation of myosin in mammalian skinned skeletal muscle fibers. Implications for twitch potentiation in intact muscle.
    Metzger JM; Greaser ML; Moss RL
    J Gen Physiol; 1989 May; 93(5):855-83. PubMed ID: 2661721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of MgADP on cross-bridge kinetics: a laser flash photolysis study of guinea-pig smooth muscle.
    Nishiye E; Somlyo AV; Török K; Somlyo AP
    J Physiol; 1993 Jan; 460():247-71. PubMed ID: 8487195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A cardiac muscle model relating sarcomere dynamics to calcium kinetics.
    Negroni JA; Lascano EC
    J Mol Cell Cardiol; 1996 May; 28(5):915-29. PubMed ID: 8762031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ca(2+)-force relationship of frog skeletal muscle: a dynamic model for parameter estimation.
    Shames DM; Baker AJ; Weiner MW; Camacho SA
    Am J Physiol; 1996 Dec; 271(6 Pt 1):C2062-71. PubMed ID: 8997209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A cross-bridge cycle with two tension-generating steps simulates skeletal muscle mechanics.
    Offer G; Ranatunga KW
    Biophys J; 2013 Aug; 105(4):928-40. PubMed ID: 23972845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parallel inhibition of active force and relaxed fiber stiffness in skeletal muscle by caldesmon: implications for the pathway to force generation.
    Brenner B; Yu LC; Chalovich JM
    Proc Natl Acad Sci U S A; 1991 Jul; 88(13):5739-43. PubMed ID: 2062853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of series elasticity on delay in development of tension relative to stiffness during muscle activation.
    Luo Y; Cooke R; Pate E
    Am J Physiol; 1994 Dec; 267(6 Pt 1):C1598-606. PubMed ID: 7810601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitric oxide impairs Ca2+ activation and slows cross-bridge cycling kinetics in skeletal muscle.
    Heunks LM; Cody MJ; Geiger PC; Dekhuijzen PN; Sieck GC
    J Appl Physiol (1985); 2001 Nov; 91(5):2233-9. PubMed ID: 11641366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation kinetics of skinned cardiac muscle by laser photolysis of nitrophenyl-EGTA.
    Martin H; Bell MG; Ellis-Davies GC; Barsotti RJ
    Biophys J; 2004 Feb; 86(2):978-90. PubMed ID: 14747333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of contraction in striated muscle.
    Gordon AM; Homsher E; Regnier M
    Physiol Rev; 2000 Apr; 80(2):853-924. PubMed ID: 10747208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of tension and stiffness due to reduced pH in mammalian fast- and slow-twitch skinned skeletal muscle fibres.
    Metzger JM; Moss RL
    J Physiol; 1990 Sep; 428():737-50. PubMed ID: 2231431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.