BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 11032421)

  • 1. Redox regulation of yeast flavin-containing monooxygenase.
    Suh JK; Poulsen LL; Ziegler DM; Robertus JD
    Arch Biochem Biophys; 2000 Sep; 381(2):317-22. PubMed ID: 11032421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lysine 219 participates in NADPH specificity in a flavin-containing monooxygenase from Saccharomyces cerevisiae.
    Suh JK; Poulsen LL; Ziegler DM; Robertus JD
    Arch Biochem Biophys; 1999 Dec; 372(2):360-6. PubMed ID: 10600176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of yeast flavin-containing monooxygenase in maintenance of thiol-disulfide redox potential.
    Suh JK; Robertus JD
    Methods Enzymol; 2002; 348():113-21. PubMed ID: 11885265
    [No Abstract]   [Full Text] [Related]  

  • 4. Yeast flavin-containing monooxygenase generates oxidizing equivalents that control protein folding in the endoplasmic reticulum.
    Suh JK; Poulsen LL; Ziegler DM; Robertus JD
    Proc Natl Acad Sci U S A; 1999 Mar; 96(6):2687-91. PubMed ID: 10077572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular cloning and kinetic characterization of a flavin-containing monooxygenase from Saccharomyces cerevisiae.
    Suh JK; Poulsen LL; Ziegler DM; Robertus JD
    Arch Biochem Biophys; 1996 Dec; 336(2):268-74. PubMed ID: 8954574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox-dependent stability of the γ-glutamylcysteine synthetase enzyme of Escherichia coli: a novel means of redox regulation.
    Kumar S; Kasturia N; Sharma A; Datt M; Bachhawat AK
    Biochem J; 2013 Feb; 449(3):783-94. PubMed ID: 23126248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of redox state and reductase activity of protein disulfide isomerase under different redox environments using a sensitive fluorescent assay.
    Raturi A; Mutus B
    Free Radic Biol Med; 2007 Jul; 43(1):62-70. PubMed ID: 17561094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox regulation of a soybean tyrosine-specific protein phosphatase.
    Dixon DP; Fordham-Skelton AP; Edwards R
    Biochemistry; 2005 May; 44(21):7696-703. PubMed ID: 15909984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular cloning and characterization of a full-length flavin-dependent monooxygenase from yeast.
    Zhang M; Robertus JD
    Arch Biochem Biophys; 2002 Jul; 403(2):277-83. PubMed ID: 12139977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Competition between glutathione and protein thiols for disulphide-bond formation.
    Cuozzo JW; Kaiser CA
    Nat Cell Biol; 1999 Jul; 1(3):130-5. PubMed ID: 10559898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative inhibition of yeast glutathione reductase by arsenicals and arsenothiols.
    Styblo M; Serves SV; Cullen WR; Thomas DJ
    Chem Res Toxicol; 1997 Jan; 10(1):27-33. PubMed ID: 9074799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox potentials for yeast, Escherichia coli and human glutathione reductase relative to the NAD+/NADH redox couple: enzyme forms active in catalysis.
    Veine DM; Arscott LD; Williams CH
    Biochemistry; 1998 Nov; 37(44):15575-82. PubMed ID: 9799522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The system biology of thiol redox system in Escherichia coli and yeast: differential functions in oxidative stress, iron metabolism and DNA synthesis.
    Toledano MB; Kumar C; Le Moan N; Spector D; Tacnet F
    FEBS Lett; 2007 Jul; 581(19):3598-607. PubMed ID: 17659286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytoplasmic glutathione redox status determines survival upon exposure to the thiol-oxidant 4,4'-dipyridyl disulfide.
    López-Mirabal HR; Thorsen M; Kielland-Brandt MC; Toledano MB; Winther JR
    FEMS Yeast Res; 2007 May; 7(3):391-403. PubMed ID: 17253982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alterations in redox potential of glutathione/glutathione disulfide and cysteine/cysteine disulfide couples in plasma of dropsy patients with argemone oil poisoning.
    Babu CK; Ansari KM; Mehrotra S; Khanna R; Khanna SK; Das M
    Food Chem Toxicol; 2008 Jul; 46(7):2409-14. PubMed ID: 18486295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox and functional analysis of the Rieske ferredoxin component of the toluene 4-monooxygenase.
    Elsen NL; Moe LA; McMartin LA; Fox BG
    Biochemistry; 2007 Jan; 46(4):976-86. PubMed ID: 17240981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flavins inhibit human cytomegalovirus UL80 protease via disulfide bond formation.
    Baum EZ; Ding WD; Siegel MM; Hulmes J; Bebernitz GA; Sridharan L; Tabei K; Krishnamurthy G; Carofiglio T; Groves JT; Bloom JD; DiGrandi M; Bradley M; Ellestad G; Seddon AP; Gluzman Y
    Biochemistry; 1996 May; 35(18):5847-55. PubMed ID: 8639546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular proatherogenic events and cell adhesion modulated by extracellular thiol/disulfide redox state.
    Go YM; Jones DP
    Circulation; 2005 Jun; 111(22):2973-80. PubMed ID: 15927968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox control of aryl sulfotransferase specificity.
    Marshall AD; McPhie P; Jakoby WB
    Arch Biochem Biophys; 2000 Oct; 382(1):95-104. PubMed ID: 11051102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutathione and thioredoxin redox during differentiation in human colon epithelial (Caco-2) cells.
    Nkabyo YS; Ziegler TR; Gu LH; Watson WH; Jones DP
    Am J Physiol Gastrointest Liver Physiol; 2002 Dec; 283(6):G1352-9. PubMed ID: 12433666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.