These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 11033541)

  • 1. The effect of peptide surface density on mineralization of a matrix deposited by osteogenic cells.
    Rezania A; Healy KE
    J Biomed Mater Res; 2000 Dec; 52(4):595-600. PubMed ID: 11033541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomimetic peptide surfaces that regulate adhesion, spreading, cytoskeletal organization, and mineralization of the matrix deposited by osteoblast-like cells.
    Rezania A; Healy KE
    Biotechnol Prog; 1999; 15(1):19-32. PubMed ID: 9933510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The detachment strength and morphology of bone cells contacting materials modified with a peptide sequence found within bone sialoprotein.
    Rezania A; Thomas CH; Branger AB; Waters CM; Healy KE
    J Biomed Mater Res; 1997 Oct; 37(1):9-19. PubMed ID: 9335344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of ligand type and density on osteoblast adhesion, proliferation, and matrix mineralization.
    Harbers GM; Healy KE
    J Biomed Mater Res A; 2005 Dec; 75(4):855-69. PubMed ID: 16121356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis, surface, and cell-adhesion properties of polyurethanes containing covalently grafted RGD-peptides.
    Lin HB; Sun W; Mosher DF; García-Echeverría C; Schaufelberger K; Lelkes PI; Cooper SL
    J Biomed Mater Res; 1994 Mar; 28(3):329-42. PubMed ID: 8077248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osteoblast-like cell adhesion to bone sialoprotein peptides.
    Rapuano BE; Wu C; MacDonald DE
    J Orthop Res; 2004 Mar; 22(2):353-61. PubMed ID: 15013096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced osteoblast functions on RGD immobilized surface.
    Huang H; Zhao Y; Liu Z; Zhang Y; Zhang H; Fu T; Ma X
    J Oral Implantol; 2003; 29(2):73-9. PubMed ID: 12760450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attachment of osteoblastic cells to hydroxyapatite crystals by a synthetic peptide (Glu7-Pro-Arg-Gly-Asp-Thr) containing two functional sequences of bone sialoprotein.
    Fujisawa R; Mizuno M; Nodasaka Y; Kuboki Y
    Matrix Biol; 1997 Apr; 16(1):21-8. PubMed ID: 9181551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-activity relationship of human bone sialoprotein peptides.
    Rapuano BE; MacDonald DE
    Eur J Oral Sci; 2013 Dec; 121(6):600-9. PubMed ID: 24103036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrin subunits responsible for adhesion of human osteoblast-like cells to biomimetic peptide surfaces.
    Rezania A; Healy KE
    J Orthop Res; 1999 Jul; 17(4):615-23. PubMed ID: 10459771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms underlying the attachment and spreading of human osteoblasts: from transient interactions to focal adhesions on vitronectin-grafted bioactive surfaces.
    Brun P; Scorzeto M; Vassanelli S; Castagliuolo I; Palù G; Ghezzo F; Messina GM; Iucci G; Battaglia V; Sivolella S; Bagno A; Polzonetti G; Marletta G; Dettin M
    Acta Biomater; 2013 Apr; 9(4):6105-15. PubMed ID: 23261922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro characterization of peptide-modified p(AAm-co-EG/AAc) IPN-coated titanium implants.
    Barber TA; Gamble LJ; Castner DG; Healy KE
    J Orthop Res; 2006 Jul; 24(7):1366-76. PubMed ID: 16732610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RGD-containing peptide GCRGYGRGDSPG reduces enhancement of osteoblast differentiation by poly(L-lysine)-graft-poly(ethylene glycol)-coated titanium surfaces.
    Tosatti S; Schwartz Z; Campbell C; Cochran DL; VandeVondele S; Hubbell JA; Denzer A; Simpson J; Wieland M; Lohmann CH; Textor M; Boyan BD
    J Biomed Mater Res A; 2004 Mar; 68(3):458-72. PubMed ID: 14762925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Attachment, proliferation, and migration of marrow stromal osteoblasts cultured on biomimetic hydrogels modified with an osteopontin-derived peptide.
    Shin H; Zygourakis K; Farach-Carson MC; Yaszemski MJ; Mikos AG
    Biomaterials; 2004 Feb; 25(5):895-906. PubMed ID: 14609678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of RGD nanopatterns grafted onto titanium on osteoblastic cell adhesion.
    Nguyen MN; Lebarbe T; Zouani OF; Pichavant L; Durrieu MC; Héroguez V
    Biomacromolecules; 2012 Mar; 13(3):896-904. PubMed ID: 22288777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Issues of ligand accessibility and mobility in initial cell attachment.
    Thid D; Bally M; Holm K; Chessari S; Tosatti S; Textor M; Gold J
    Langmuir; 2007 Nov; 23(23):11693-704. PubMed ID: 17918863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison between RGD-peptide-modified titanium and borosilicate surfaces.
    Senyah N; Hildebrand G; Liefeith K
    Anal Bioanal Chem; 2005 Nov; 383(5):758-62. PubMed ID: 16151591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect on osteoblast function of colocalized RGD and PHSRN epitopes on PEG surfaces.
    Benoit DS; Anseth KS
    Biomaterials; 2005 Sep; 26(25):5209-20. PubMed ID: 15792548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Covalent surface immobilization of Arg-Gly-Asp- and Tyr-Ile-Gly-Ser-Arg-containing peptides to obtain well-defined cell-adhesive substrates.
    Massia SP; Hubbell JA
    Anal Biochem; 1990 Jun; 187(2):292-301. PubMed ID: 2382830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomolecular modification of p(AAm-co-EG/AA) IPNs supports osteoblast adhesion and phenotypic expression.
    Bearinger JP; Castner DG; Healy KE
    J Biomater Sci Polym Ed; 1998; 9(7):629-52. PubMed ID: 9686332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.