These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 11033565)

  • 61. Bioactivity of calcium aluminate endodontic cement.
    Oliveira IR; Andrade TL; Jacobovitz M; Pandolfelli VC
    J Endod; 2013 Jun; 39(6):774-8. PubMed ID: 23683278
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Modulation of zinc release from bioactive sol-gel derived SiO(2)-CaO-ZnO glasses and ceramics.
    Jaroch DB; Clupper DC
    J Biomed Mater Res A; 2007 Sep; 82(3):575-88. PubMed ID: 17315234
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Chemical characterization of silicon-substituted hydroxyapatite.
    Gibson IR; Best SM; Bonfield W
    J Biomed Mater Res; 1999 Mar; 44(4):422-8. PubMed ID: 10397946
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A novel skeletal drug delivery system using self-setting calcium phosphate cement. 7. Effect of biological factors on indomethacin release from the cement loaded on bovine bone.
    Otsuka M; Nakahigashi Y; Matsuda Y; Fox JL; Higuchi WI
    J Pharm Sci; 1994 Nov; 83(11):1569-73. PubMed ID: 7891276
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Mechanical properties and in vitro bioactivity of Ca5(PO4)2SiO4 bioceramic.
    Lu W; Duan W; Guo Y; Ning C
    J Biomater Appl; 2012 Feb; 26(6):637-50. PubMed ID: 20876633
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Efficacy of the injectable calcium phosphate ceramics suspensions containing magnesium, zinc and fluoride on the bone mineral deficiency in ovariectomized rats.
    Otsuka M; Oshinbe A; Legeros RZ; Tokudome Y; Ito A; Otsuka K; Higuchi WI
    J Pharm Sci; 2008 Jan; 97(1):421-32. PubMed ID: 17879990
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Effect of TiO2-Ag2O additives on the formation of calcium phosphate based functionally graded bioceramics.
    Manjubala I; Sampath Kumar TS
    Biomaterials; 2000 Oct; 21(19):1995-2002. PubMed ID: 10941921
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Surface reactions of calcium phosphate ceramics to various solutions.
    Hyakuna K; Yamamuro T; Kotoura Y; Oka M; Nakamura T; Kitsugi T; Kokubo T; Kushitani H
    J Biomed Mater Res; 1990 Apr; 24(4):471-88. PubMed ID: 2347873
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Rapid resorbable, glassy crystalline materials on the basis of calcium alkali orthophosphates.
    Berger G; Gildenhaar R; Ploska U
    Biomaterials; 1995 Nov; 16(16):1241-8. PubMed ID: 8589194
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Application of dissolution experiments to characterise the structure of pulsed laser-deposited calcium phosphate coatings.
    Clèries L; Fernández-Pradas JM; Sardin G; Morenza JL
    Biomaterials; 1999 Aug; 20(15):1401-5. PubMed ID: 10454011
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Crystallization of carboplatin-loaded onto microporous calcium phosphate using high-vacuum method: Characterization and release study.
    Savicki C; Camargo NHA; Gemelli E
    PLoS One; 2020; 15(12):e0242565. PubMed ID: 33290399
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Effect of controlled zinc release on bone mineral density from injectable Zn-containing beta-tricalcium phosphate suspension in zinc-deficient diseased rats.
    Otsuka M; Ohshita Y; Marunaka S; Matsuda Y; Ito A; Ichinose N; Otsuka K; Higuchi WI
    J Biomed Mater Res A; 2004 Jun; 69(3):552-60. PubMed ID: 15127402
    [TBL] [Abstract][Full Text] [Related]  

  • 73. In vitro dissolution of calcium phosphate-mullite composite in simulated body fluid.
    Priya A; Nath S; Biswas K; Basu B
    J Mater Sci Mater Med; 2010 Jun; 21(6):1817-28. PubMed ID: 20411309
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effects of solidification cooling rate on the corrosion resistance of a biodegradable β-TCP/Mg-Zn-Ca composite.
    Yuan Q; Huang Y; Liu D; Chen M
    Bioelectrochemistry; 2018 Dec; 124():93-104. PubMed ID: 30007209
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Surface reactivity of calcium phosphate based ceramics in a cell culture system.
    John A; Varma HK; Kumari TV
    J Biomater Appl; 2003 Jul; 18(1):63-78. PubMed ID: 12873076
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A study of the formation of amorphous calcium phosphate and hydroxyapatite on melt quenched Bioglass using surface sensitive shallow angle X-ray diffraction.
    Martin RA; Twyman H; Qiu D; Knowles JC; Newport RJ
    J Mater Sci Mater Med; 2009 Apr; 20(4):883-8. PubMed ID: 19083082
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Dissolution properties of calcium phosphate granules with different compositions in simulated body fluid.
    Monteiro MM; Campos da Rocha NC; Rossi AM; de Almeida Soares G
    J Biomed Mater Res A; 2003 May; 65(2):299-305. PubMed ID: 12734825
    [TBL] [Abstract][Full Text] [Related]  

  • 78. [Effects of simulated body fluid flowing rate on bone-like apatite formation on porous calcium phosphate ceramics].
    Duan YR; Liu KW; Chen JY; Zhang XD
    Space Med Med Eng (Beijing); 2002 Jun; 15(3):203-7. PubMed ID: 12224554
    [TBL] [Abstract][Full Text] [Related]  

  • 79. In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses.
    Sepulveda P; Jones JR; Hench LL
    J Biomed Mater Res; 2002 Aug; 61(2):301-11. PubMed ID: 12007211
    [TBL] [Abstract][Full Text] [Related]  

  • 80. In vitro changes of hydroxyapatite coatings.
    Gross KA; Berndt CC; Goldschlag DD; Iacono VJ
    Int J Oral Maxillofac Implants; 1997; 12(5):589-97. PubMed ID: 9337018
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.