BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

844 related articles for article (PubMed ID: 11034209)

  • 1. A marine microbial consortium apparently mediating anaerobic oxidation of methane.
    Boetius A; Ravenschlag K; Schubert CJ; Rickert D; Widdel F; Gieseke A; Amann R; Jørgensen BB; Witte U; Pfannkuche O
    Nature; 2000 Oct; 407(6804):623-6. PubMed ID: 11034209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis.
    Orphan VJ; House CH; Hinrichs KU; McKeegan KD; DeLong EF
    Science; 2001 Jul; 293(5529):484-7. PubMed ID: 11463914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane.
    Michaelis W; Seifert R; Nauhaus K; Treude T; Thiel V; Blumenberg M; Knittel K; Gieseke A; Peterknecht K; Pape T; Boetius A; Amann R; Jørgensen BB; Widdel F; Peckmann J; Pimenov NV; Gulin MB
    Science; 2002 Aug; 297(5583):1013-5. PubMed ID: 12169733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into the genomes of archaea mediating the anaerobic oxidation of methane.
    Meyerdierks A; Kube M; Lombardot T; Knittel K; Bauer M; Glöckner FO; Reinhardt R; Amann R
    Environ Microbiol; 2005 Dec; 7(12):1937-51. PubMed ID: 16309392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Microbiological and biogeochemical processes in a pockmark of the Gdansk depression, Baltic Sea].
    Pimenov NV; Ul'ianova MO; Kanapatski TA; Sivkov VV; Ivanov MV
    Mikrobiologiia; 2008; 77(5):651-9. PubMed ID: 19004347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methane and sulfate profiles within the subsurface of a tidal flat are reflected by the distribution of sulfate-reducing bacteria and methanogenic archaea.
    Wilms R; Sass H; Köpke B; Cypionka H; Engelen B
    FEMS Microbiol Ecol; 2007 Mar; 59(3):611-21. PubMed ID: 17059478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico.
    Orcutt B; Samarkin V; Boetius A; Joye S
    Environ Microbiol; 2008 May; 10(5):1108-17. PubMed ID: 18218032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reverse methanogenesis: testing the hypothesis with environmental genomics.
    Hallam SJ; Putnam N; Preston CM; Detter JC; Rokhsar D; Richardson PM; DeLong EF
    Science; 2004 Sep; 305(5689):1457-62. PubMed ID: 15353801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate.
    Nauhaus K; Albrecht M; Elvert M; Boetius A; Widdel F
    Environ Microbiol; 2007 Jan; 9(1):187-96. PubMed ID: 17227423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep-sea archaea fix and share nitrogen in methane-consuming microbial consortia.
    Dekas AE; Poretsky RS; Orphan VJ
    Science; 2009 Oct; 326(5951):422-6. PubMed ID: 19833965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A microbial consortium couples anaerobic methane oxidation to denitrification.
    Raghoebarsing AA; Pol A; van de Pas-Schoonen KT; Smolders AJ; Ettwig KF; Rijpstra WI; Schouten S; Damsté JS; Op den Camp HJ; Jetten MS; Strous M
    Nature; 2006 Apr; 440(7086):918-21. PubMed ID: 16612380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enrichment of anaerobic methanotrophs in sulfate-reducing membrane bioreactors.
    Meulepas RJ; Jagersma CG; Gieteling J; Buisman CJ; Stams AJ; Lens PN
    Biotechnol Bioeng; 2009 Oct; 104(3):458-70. PubMed ID: 19544305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methyl sulfides as intermediates in the anaerobic oxidation of methane.
    Moran JJ; Beal EJ; Vrentas JM; Orphan VJ; Freeman KH; House CH
    Environ Microbiol; 2008 Jan; 10(1):162-73. PubMed ID: 17903217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial diversity and community structure of a highly active anaerobic methane-oxidizing sulfate-reducing enrichment.
    Jagersma GC; Meulepas RJ; Heikamp-de Jong I; Gieteling J; Klimiuk A; Schouten S; Damsté JS; Lens PN; Stams AJ
    Environ Microbiol; 2009 Dec; 11(12):3223-32. PubMed ID: 19703218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resolving a methane mystery.
    DeLong EF
    Nature; 2000 Oct; 407(6804):577, 579. PubMed ID: 11034193
    [No Abstract]   [Full Text] [Related]  

  • 16. Evidence for anaerobic oxidation of methane in sediments of a freshwater system (Lago di Cadagno).
    Schubert CJ; Vazquez F; Lösekann-Behrens T; Knittel K; Tonolla M; Boetius A
    FEMS Microbiol Ecol; 2011 Apr; 76(1):26-38. PubMed ID: 21244447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbiology. Fantastic fixers.
    Fulweiler RW
    Science; 2009 Oct; 326(5951):377-8. PubMed ID: 19833949
    [No Abstract]   [Full Text] [Related]  

  • 18. Geomicrobial characterization of gas hydrate-bearing sediments along the mid-Chilean margin.
    Hamdan LJ; Gillevet PM; Sikaroodi M; Pohlman JW; Plummer RE; Coffin RB
    FEMS Microbiol Ecol; 2008 Jul; 65(1):15-30. PubMed ID: 18522645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assimilation of methane and inorganic carbon by microbial communities mediating the anaerobic oxidation of methane.
    Wegener G; Niemann H; Elvert M; Hinrichs KU; Boetius A
    Environ Microbiol; 2008 Sep; 10(9):2287-98. PubMed ID: 18498367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methane as fuel for anaerobic microorganisms.
    Thauer RK; Shima S
    Ann N Y Acad Sci; 2008 Mar; 1125():158-70. PubMed ID: 18096853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 43.