These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 11034372)

  • 41. Janus kinase 3-deficient T lymphocytes have an intrinsic defect in CCR7-mediated homing to peripheral lymphoid organs.
    García-Zepeda EA; Licona-Limón I; Jiménez-Sólomon MF; Soldevila G
    Immunology; 2007 Oct; 122(2):247-60. PubMed ID: 17521370
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The amino terminus of JAK3 is necessary and sufficient for binding to the common gamma chain and confers the ability to transmit interleukin 2-mediated signals.
    Chen M; Cheng A; Chen YQ; Hymel A; Hanson EP; Kimmel L; Minami Y; Taniguchi T; Changelian PS; O'Shea JJ
    Proc Natl Acad Sci U S A; 1997 Jun; 94(13):6910-5. PubMed ID: 9192665
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Decreased thymic output accounts for decreased naive T cell numbers in children with Down syndrome.
    Bloemers BL; Bont L; de Weger RA; Otto SA; Borghans JA; Tesselaar K
    J Immunol; 2011 Apr; 186(7):4500-7. PubMed ID: 21346234
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Il-7 and not stem cell factor reverses both the increase in apoptosis and the decline in thymopoiesis seen in aged mice.
    Andrew D; Aspinall R
    J Immunol; 2001 Feb; 166(3):1524-30. PubMed ID: 11160192
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Critical role for c-kit (CD117) in T cell lineage commitment and early thymocyte development in vitro.
    Massa S; Balciunaite G; Ceredig R; Rolink AG
    Eur J Immunol; 2006 Mar; 36(3):526-32. PubMed ID: 16482516
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Jak3 and the pathogenesis of severe combined immunodeficiency.
    O'Shea JJ; Husa M; Li D; Hofmann SR; Watford W; Roberts JL; Buckley RH; Changelian P; Candotti F
    Mol Immunol; 2004 Jul; 41(6-7):727-37. PubMed ID: 15220007
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Early intrathymic precursor cells acquire a CD4(low) phenotype.
    Michie AM; Carlyle JR; Zúñiga-Pflücker JC
    J Immunol; 1998 Feb; 160(4):1735-41. PubMed ID: 9469431
    [TBL] [Abstract][Full Text] [Related]  

  • 48. NK T cell precursors exhibit differential cytokine regulation and require Itk for efficient maturation.
    Gadue P; Stein PL
    J Immunol; 2002 Sep; 169(5):2397-406. PubMed ID: 12193707
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Self-selection by genetically modified committed lymphocyte precursors reverses the phenotype of JAK3-deficient mice without myeloablation.
    Bunting KD; Lu T; Kelly PF; Sorrentino BP
    Hum Gene Ther; 2000 Nov; 11(17):2353-64. PubMed ID: 11096440
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nonhematopoietic expression of Janus kinase 3 is required for efficient recruitment of Th2 lymphocytes and eosinophils in OVA-induced airway inflammation.
    Verbsky JW; Randolph DA; Shornick LP; Chaplin DD
    J Immunol; 2002 Mar; 168(5):2475-82. PubMed ID: 11859141
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Critical role for the common cytokine receptor gamma chain in intrathymic and peripheral T cell selection.
    DiSanto JP; Guy-Grand D; Fisher A; Tarakhovsky A
    J Exp Med; 1996 Mar; 183(3):1111-8. PubMed ID: 8642253
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Molecular and biochemical characterization of JAK3 deficiency in a patient with severe combined immunodeficiency over 20 years after bone marrow transplantation: implications for treatment.
    Bozzi F; Lefranc G; Villa A; Badolato R; Schumacher RF; Khalil G; Loiselet J; Bresciani S; O'Shea JJ; Vezzoni P; Notarangelo LD; Candotti F
    Br J Haematol; 1998 Sep; 102(5):1363-6. PubMed ID: 9753072
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Activation of cellular death programs associated with immunosenescence-like phenotype in TPPII knockout mice.
    Huai J; Firat E; Nil A; Million D; Gaedicke S; Kanzler B; Freudenberg M; van Endert P; Kohler G; Pahl HL; Aichele P; Eichmann K; Niedermann G
    Proc Natl Acad Sci U S A; 2008 Apr; 105(13):5177-82. PubMed ID: 18362329
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dysregulated myelopoiesis in mice lacking Jak3.
    Grossman WJ; Verbsky JW; Yang L; Berg LJ; Fields LE; Chaplin DD; Ratner L
    Blood; 1999 Aug; 94(3):932-9. PubMed ID: 10419884
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Severe combined immune deficiencies due to defects of the common gamma chain-JAK3 signaling pathway.
    Candotti F; O'Shea JJ; Villa A
    Springer Semin Immunopathol; 1998; 19(4):401-15. PubMed ID: 9618765
    [No Abstract]   [Full Text] [Related]  

  • 56. T Cell Acute Lymphoblastic Leukemia as a Consequence of Thymus Autonomy.
    Ballesteros-Arias L; Silva JG; Paiva RA; Carbonetto B; Faísca P; Martins VC
    J Immunol; 2019 Feb; 202(4):1137-1144. PubMed ID: 30651344
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Thymic dysplasia associated with lymphopenia.
    Lewis JF; Matthews WP
    South Med J; 1972 Aug; 65(8):998-1000. PubMed ID: 4402960
    [No Abstract]   [Full Text] [Related]  

  • 58. Spontaneous Posterior Segment Vascular Disease Phenotype of a Mouse Model, rnv3, Is Dependent on the Crb1rd8 Allele.
    Chang B; FitzMaurice B; Wang J; Low BE; Wiles MV; Nishina PM
    Invest Ophthalmol Vis Sci; 2018 Oct; 59(12):5127-5139. PubMed ID: 30372741
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The Philadelphia chromosome in leukemogenesis.
    Kang ZJ; Liu YF; Xu LZ; Long ZJ; Huang D; Yang Y; Liu B; Feng JX; Pan YJ; Yan JS; Liu Q
    Chin J Cancer; 2016 May; 35():48. PubMed ID: 27233483
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Janus kinase 3: the controller and the controlled.
    Wu W; Sun XH
    Acta Biochim Biophys Sin (Shanghai); 2012 Mar; 44(3):187-96. PubMed ID: 22130498
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.