These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 110345)

  • 1. Sensitization of chemotactic response by changing the lipid composition of surface membrane in Tetrahymena pyriformis.
    Tanabe H; Kurihara K; Kobatake Y
    Biochim Biophys Acta; 1979 Jun; 553(3):396-403. PubMed ID: 110345
    [No Abstract]   [Full Text] [Related]  

  • 2. Fluorescence changes of rhodamine 6G associated with chemotactic responses in Tetrahymena pyriformis.
    Aiuchi T; Tanabe H; Kurihara K; Kobatake Y
    Biochim Biophys Acta; 1980 Mar; 628(3):355-64. PubMed ID: 6768401
    [No Abstract]   [Full Text] [Related]  

  • 3. Sterol manipulation that modulates the alteration in membrane fluidity of Tetrahymena pyriformis during temperature acclimation.
    Umeki S; Nozawa Y
    Biol Chem Hoppe Seyler; 1986 Mar; 367(3):235-9. PubMed ID: 3085690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in the lipid composition and physical properties of Tetrahymena ciliary membranes following low-temperature acclimation.
    Ramesha CS; Thompson GA
    Biochemistry; 1982 Jul; 21(15):3612-7. PubMed ID: 6810927
    [No Abstract]   [Full Text] [Related]  

  • 5. Effect of tuftsin and oligotuftsins on chemotaxis and chemotactic selection in Tetrahymena pyriformis.
    Láng O; Mezo G; Hudecz F; Kohidai L
    Cell Biol Int; 2006 Jul; 30(7):603-9. PubMed ID: 16733095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in membrane potential and membrane fluidity in Tetrahymena pyriformis in association with chemoreception of hydrophobic stimuli: fluorescence studies.
    Tanabe H; Kurihara K; Kobatake Y
    Biochemistry; 1980 Nov; 19(23):5339-44. PubMed ID: 6778505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemotactic effect of mono- and disaccharides on the unicellular Tetrahymena pyriformis.
    Szemes Á; Lajkó E; Láng O; Kőhidai L
    Carbohydr Res; 2015 Apr; 407():158-65. PubMed ID: 25795600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemotaxis and chemotactic selection induced with cytokines (IL-8, RANTES and TNF-alpha) in the unicellular Tetrahymena pyriformis.
    Köhidai L; Csaba G
    Cytokine; 1998 Jul; 10(7):481-6. PubMed ID: 9702410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature-dependent changes in the swimming behaviour of Tetrahymena pyriformis-NT1 and their interrelationships with electrophysiology and the state of membrane lipids.
    Connolly JG; Brown ID; Lee AG; Kerkut GA
    Comp Biochem Physiol A Comp Physiol; 1985; 81(2):303-10. PubMed ID: 2864172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for a correlation between swimming velocity and membrane fluidity of Tetrahymena cells.
    Goto M; Ohki K; Nozawa Y
    Biochim Biophys Acta; 1982 Dec; 693(2):335-40. PubMed ID: 6818990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemotaxis of the unicellular green alga Dunaliella salina and the ciliated Tetrahymena pyriformis--effects of glycine, lysine, and alanine, and their oligopeptides.
    Kóhidai L; Kovács P; Csaba G
    Biosci Rep; 1996 Dec; 16(6):467-76. PubMed ID: 9062698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemotactic response of unicellular Tetrahymena to a leukocyte attractant peptide and its repellent derivative: evolutionary conclusions.
    Kõhidai L; Kovács P; Csaba G
    Cell Biol Int; 1994 Feb; 18(2):119-22. PubMed ID: 8019483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tetrahymena: a system for studying dynamic membrane alterations within the eukaryotic cell.
    Thompson GA; Nozawa Y
    Biochim Biophys Acta; 1977 May; 472(1):55-92. PubMed ID: 406923
    [No Abstract]   [Full Text] [Related]  

  • 14. Effects of hormones on chemotaxis in Tetrahymena: investigations on receptor memory.
    Köhidai L; Karsa J; Csaba G
    Microbios; 1994; 77(311):75-85. PubMed ID: 8152393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tetrahymena cells distinguish insulin preparations according to either their amorphous and crystalline form or their bovine and porcine origin: aspects of hormone binding and chemotaxis in relation to imprinting.
    Csaba G; Kovács P; Köhidai L
    Microbios; 1994; 80(325):215-21. PubMed ID: 7700160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phospholipid molecular species alterations in microsomal membranes as an initial key step during cellular acclimation to low temperature.
    Dickens BF; Thompson GA
    Biochemistry; 1982 Jul; 21(15):3604-11. PubMed ID: 6810926
    [No Abstract]   [Full Text] [Related]  

  • 17. Studies on tetrahymena membranes. Modification of surface membrane lipids by replacement of tetrahymanol by exogenous ergosterol in Tetrahymena pyriformis.
    Nozawa Y; Fukushima H; Iida H
    Biochim Biophys Acta; 1975 Oct; 406(2):248-63. PubMed ID: 811256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermotropic 'two-stage' liquid crystalline equilibrium crystalline lipid phase separation in microsomal membranes.
    Funk J; Wunderlich F; Kreutz W
    Biochim Biophys Acta; 1982 Sep; 690(2):306-9. PubMed ID: 6812634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemotactic selection of Tetrahymena pyriformis GL induced with histamine, di-iodotyrosine or insulin.
    Köhidai L; Schiess N; Csaba G
    Comp Biochem Physiol C Toxicol Pharmacol; 2000 May; 126(1):1-9. PubMed ID: 11048659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altered microviscosity of in vivo lipid-manipulated membranes in Tetrahymena pyriformis: a fluorescence study.
    Shimonaka H; Fukushima H; Kawai K; Nagao S; Okano Y; Nozawa Y
    Experientia; 1978 May; 34(5):586-7. PubMed ID: 95966
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.