These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 110345)
21. Effect of internalization of insulin-encapsulated and empty liposomes on hormone binding and its imprinting in Tetrahymena pyriformis. Nozawa Y; Kovács P; Ohki K; Csaba G Cell Mol Biol; 1985; 31(1):7-11. PubMed ID: 3922618 [No Abstract] [Full Text] [Related]
22. Mechanism of thermal adaptation of membrane lipids in Tetrahymena pyriformis NT-1. Possible evidence for temperature-mediated induction of palmitoyl-CoA desaturase. Nozawa Y; Kasai R Biochim Biophys Acta; 1978 Apr; 529(1):54-66. PubMed ID: 416850 [TBL] [Abstract][Full Text] [Related]
23. Influence of sterol structure on yeast plasma membrane properties. Bottema CD; Rodriguez RJ; Parks LW Biochim Biophys Acta; 1985 Mar; 813(2):313-20. PubMed ID: 3882148 [TBL] [Abstract][Full Text] [Related]
24. Structure-toxicity relationships for selected naphthoquinones to Tetrahymena pyriformis. Schultz TW; Bearden AP Bull Environ Contam Toxicol; 1998 Sep; 61(3):405-10. PubMed ID: 9724366 [No Abstract] [Full Text] [Related]
25. N-Methyl-D-aspartate receptor-mediated chemotaxis and Ca(2+) signaling in Tetrahymena pyriformis. Nam SW; Kim ST; Lee KM; Kim SH; Kou S; Lim J; Hwang H; Joo MK; Jeong B; Yoo SH; Park S Protist; 2009 May; 160(2):331-42. PubMed ID: 19213600 [TBL] [Abstract][Full Text] [Related]
26. Changes in thermal phase transition of various membranes during temperature acclimation in Tetrahymena. Nakayama H; Ohki K; Mitsui T; Nozawa Y Biochim Biophys Acta; 1984 Jan; 769(2):311-6. PubMed ID: 6320873 [TBL] [Abstract][Full Text] [Related]
27. Effect of vasoactive peptides in Tetrahymena: chemotactic activities of adrenomedullin, proadrenomedullin N-terminal 20 peptide (PAMP) and calcitonin gene-related peptide (CGRP). Kőhidai L; Tóth K; Samotik P; Ranganathan K; Láng O; Tóth M; Ruskoaho H Mol Cell Biochem; 2016 Jan; 411(1-2):271-80. PubMed ID: 26481478 [TBL] [Abstract][Full Text] [Related]
28. Direct chemotactic effect of bradykinin and related peptides-significance of amino- and carboxyterminal character of oligopeptides in chemotaxis of tetrahymena pyriformis. Kohidai L; Kovács K; Csaba G Cell Biol Int; 2002; 26(1):55-62. PubMed ID: 11779221 [TBL] [Abstract][Full Text] [Related]
29. Effects of lipid-phase separation on the filipin action on membranes of ergosterol-replaced Tetrahymena cells, as studied by freeze-fracture electron microscopy. Sekiya T; Kitajima Y; Nozawa Y Biochim Biophys Acta; 1979 Jan; 550(2):269-78. PubMed ID: 103584 [TBL] [Abstract][Full Text] [Related]
30. Effects of dipeptides containing the amino acid, proline on the chemotaxis of Tetrahymena pyriformis. Evolutionary conclusions on the formation of hormone receptors and hormones. Köhidai L; Soós P; Csaba G Cell Biol Int; 1997 Jun; 21(6):341-5. PubMed ID: 9268486 [TBL] [Abstract][Full Text] [Related]
31. Chemotactic effect of odorants and tastants on the ciliate Tetrahymena pyriformis. Láng J; Rákász V; Magyar A; Pállinger É; Kohidai L J Recept Signal Transduct Res; 2011 Dec; 31(6):423-33. PubMed ID: 22070385 [TBL] [Abstract][Full Text] [Related]
32. Method for determination of chemoattraction in Tetrahymena pyriformis. Köhidai L Curr Microbiol; 1995 Apr; 30(4):251-3. PubMed ID: 7765899 [TBL] [Abstract][Full Text] [Related]
33. Chemotactic-range-fitting of amino acids and its correlations to physicochemical parameters in Tetrahymena pyriformis--evolutionary consequences. Köhidai L; Láng O; Csaba G Cell Mol Biol (Noisy-le-grand); 2003; 49 Online Pub():OL487-95. PubMed ID: 14995080 [TBL] [Abstract][Full Text] [Related]
35. A novel Tetrahymena sp. with unusual membrane lipid composition, with special reference to iso fatty acyl chains. Fukushima H; Kasai R; Akimori N; Nozawa Y Jpn J Exp Med; 1978 Oct; 48(5):373-80. PubMed ID: 107352 [TBL] [Abstract][Full Text] [Related]
36. Synthesis of oligopeptides with the sequence SXWS and their chemotactic effects on a ciliated protozoan Tetrahymena pyriformis. Illyés E; Hudecz F; Köhidai L; Láng O; Szabó P; Sebestyén F J Pept Sci; 2002 Jan; 8(1):13-22. PubMed ID: 11831559 [TBL] [Abstract][Full Text] [Related]
37. Adaptive modification of membrane lipids in Tetrahymena pyriformis during starvation. Alterations in phospholipid composition and positional distribution of fatty acyl chains. Kasai R; Watanabe T; Fukushima H; Iida H; Nozawa Y Biochim Biophys Acta; 1981 Oct; 666(1):36-46. PubMed ID: 6794634 [No Abstract] [Full Text] [Related]
38. Correlation between fluidity and fatty acid composition of phospholipid species in Tetrahymena pyriformis during temperature acclimation. Ohki K; Kasai R; Nozawa Y Biochim Biophys Acta; 1979 Dec; 558(3):273-81. PubMed ID: 228721 [TBL] [Abstract][Full Text] [Related]
39. Chemotactic activity of oligopeptides containing an EWS motif on Tetrahymena pyriformis: the effect of amidation of the C-terminal residue. Köhidai L; Bösze S; Soós P; Illyés E; Láng O; Mák M; Sebestyen F; Hudecz F Cell Biochem Funct; 2003 Jun; 21(2):113-20. PubMed ID: 12736899 [TBL] [Abstract][Full Text] [Related]
40. Different and selective chemotactic responses of Tetrahymena pyriformis to two families of signal molecules: lectins and peptide hormones. Köhidai L; Csaba G Acta Microbiol Immunol Hung; 1996; 43(1):83-91. PubMed ID: 8806947 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]