BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 110350)

  • 1. Kinetic mechanism of the aliphatic amidase from Pseudomonas aeruginosa.
    Woods MJ; Findlater JD; Orsi BA
    Biochim Biophys Acta; 1979 Mar; 567(1):225-37. PubMed ID: 110350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic properties of wild-type and altered recombinant amidases by the use of ion-selective electrode assay method.
    Martins S; Karmali A; Serralheiro ML
    Anal Biochem; 2006 Aug; 355(2):232-9. PubMed ID: 16792995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chloroacetone as an active-site-directed inhibitor of the aliphatic amidase from Pseudomonas aeruginosa.
    Hollaway MR; Clarke PH; Ticho T
    Biochem J; 1980 Dec; 191(3):811-26. PubMed ID: 6793036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of Fourier transform infrared spectroscopy for monitoring hydrolysis and synthesis reactions catalyzed by a recombinant amidase.
    Pacheco R; Karmali A; Serralheiro ML; Haris PI
    Anal Biochem; 2005 Nov; 346(1):49-58. PubMed ID: 16185648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arg-188 and Trp-144 are implicated in the binding of urea and acetamide to the active site of the amidase from Pseudomonas aeruginosa.
    Tata R; Marsh P; Brown PR
    Biochim Biophys Acta; 1994 Mar; 1205(1):139-45. PubMed ID: 8142478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acyl transfer activity of an amidase from Rhodococcus sp. strain R312: formation of a wide range of hydroxamic acids.
    Fournand D; Bigey F; Arnaud A
    Appl Environ Microbiol; 1998 Aug; 64(8):2844-52. PubMed ID: 9687439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A competition time-course method for following enzymic reactions applied to the hydrolysis of acetamide catalysed by an aliphatic amidase.
    Hollaway MR; Ticho T
    FEBS Lett; 1979 Oct; 106(1):185-8. PubMed ID: 115712
    [No Abstract]   [Full Text] [Related]  

  • 8. Inhibition of the aliphatic amidase from Pseudomonas aeruginosa by urea and related compounds.
    Gregoriou M; Brown PR
    Eur J Biochem; 1979 May; 96(1):101-8. PubMed ID: 110589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel thermostable nitrilase superfamily amidase from Geobacillus pallidus showing acyl transfer activity.
    Makhongela HS; Glowacka AE; Agarkar VB; Sewell BT; Weber B; Cameron RA; Cowan DA; Burton SG
    Appl Microbiol Biotechnol; 2007 Jun; 75(4):801-11. PubMed ID: 17347819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The aliphatic acylamide amidohydrolase of Mycobacterium smegmatis: its inducible nature and relation to acyl-transfer to hydroxylamine.
    Draper P
    J Gen Microbiol; 1967 Jan; 46(1):111-23. PubMed ID: 6030461
    [No Abstract]   [Full Text] [Related]  

  • 11. Measuring enzymatic activity of a recombinant amidase using Fourier transform infrared spectroscopy.
    Pacheco R; Serralheiro ML; Karmali A; Haris PI
    Anal Biochem; 2003 Nov; 322(2):208-14. PubMed ID: 14596829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering of Pseudomonas aeruginosa lipase by directed evolution for enhanced amidase activity: mechanistic implication for amide hydrolysis by serine hydrolases.
    Nakagawa Y; Hasegawa A; Hiratake J; Sakata K
    Protein Eng Des Sel; 2007 Jul; 20(7):339-46. PubMed ID: 17616559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic study on the reaction mechanism of pantothenase: existence of an acyl-enzyme intermediate and role of general acid catalysis.
    Airas RK
    Biochemistry; 1978 Nov; 17(23):4932-8. PubMed ID: 102337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-step affinity purification of amidase from mutant strains of Pseudomonas aeruginosa.
    Domingos A; Karmali A; Brown PR
    Biochimie; 1989; 71(11-12):1179-84. PubMed ID: 2517478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catabolite repression of Pseudomonas aeruginosa amidase: the effect of carbon source on amidase synthesis.
    Smyth PF; Clarke PH
    J Gen Microbiol; 1975 Sep; 90(1):81-90. PubMed ID: 170365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of amidase from Pseudomonas aeruginosa showing a trapped acyl transfer reaction intermediate state.
    Andrade J; Karmali A; Carrondo MA; Frazão C
    J Biol Chem; 2007 Jul; 282(27):19598-605. PubMed ID: 17442671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Butyramide-utilizing mutants of Pseudomonas aeruginosa 8602 which produce an amidase with altered substrate specificity.
    Brown JE; Brown PR; Clarke PH
    J Gen Microbiol; 1969 Aug; 57(2):273-85. PubMed ID: 4981920
    [No Abstract]   [Full Text] [Related]  

  • 18. Substitutions of Thr-103-Ile and Trp-138-Gly in amidase from Pseudomonas aeruginosa are responsible for altered kinetic properties and enzyme instability.
    Karmali A; Pacheco R; Tata R; Brown P
    Mol Biotechnol; 2001 Mar; 17(3):201-12. PubMed ID: 11434308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic analysis of amidase mutants of Pseudomonas aeruginosa.
    Betz JL; Brown JE; Clarke PH; Day M
    Genet Res; 1974 Jun; 23(3):335-59. PubMed ID: 4215693
    [No Abstract]   [Full Text] [Related]  

  • 20. Transition-state analogs of an aliphatic amidase.
    Findlater JD; Orsi BA
    FEBS Lett; 1973 Sep; 35(1):109-11. PubMed ID: 4201665
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.