These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 11035195)

  • 1. Selecting optimal antisense reagents.
    Sohail M; Southern EM
    Adv Drug Deliv Rev; 2000 Oct; 44(1):23-34. PubMed ID: 11035195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybridization of antisense reagents to RNA.
    Sohail M; Southern EM
    Curr Opin Mol Ther; 2000 Jun; 2(3):264-71. PubMed ID: 11249620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rational selection of antisense oligonucleotide sequences.
    Smith L; Andersen KB; Hovgaard L; Jaroszewski JW
    Eur J Pharm Sci; 2000 Sep; 11(3):191-8. PubMed ID: 11042224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strategies to identify potential therapeutic target sites in RNA.
    Lützelberger M; Kjems J
    Handb Exp Pharmacol; 2006; (173):243-59. PubMed ID: 16594619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antisense oligonucleotides.
    Kashihara N; Maeshima Y; Makino H
    Exp Nephrol; 1998; 6(1):84-8. PubMed ID: 9523178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast and accurate determination of sites along the FUT2 in vitro transcript that are accessible to antisense oligonucleotides by application of secondary structure predictions and RNase H in combination with MALDI-TOF mass spectrometry.
    Gabler A; Krebs S; Seichter D; Förster M
    Nucleic Acids Res; 2003 Aug; 31(15):e79. PubMed ID: 12888531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel integrated strategy (full length gene targeting) for mRNA accessible site tagging combined with microarray hybridization/RNase H cleavage to screen effective antisense oligonucleotides.
    Sun Y; Duan M; Lin R; Wang D; Li C; Bo X; Wang S
    Mol Vis; 2006 Nov; 12():1364-71. PubMed ID: 17149362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of bacterial RNase P RNA as a drug target.
    Willkomm DK; Gruegelsiepe H; Goudinakis O; Kretschmer-Kazemi Far R; Bald R; Erdmann VA; Hartmann RK
    Chembiochem; 2003 Oct; 4(10):1041-8. PubMed ID: 14523922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding affinity and specificity of Escherichia coli RNase H1: impact on the kinetics of catalysis of antisense oligonucleotide-RNA hybrids.
    Lima WF; Crooke ST
    Biochemistry; 1997 Jan; 36(2):390-8. PubMed ID: 9003192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selecting effective antisense reagents on combinatorial oligonucleotide arrays.
    Milner N; Mir KU; Southern EM
    Nat Biotechnol; 1997 Jun; 15(6):537-41. PubMed ID: 9181575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potent antisense oligonucleotides to the human multidrug resistance-1 mRNA are rationally selected by mapping RNA-accessible sites with oligonucleotide libraries.
    Ho SP; Britton DH; Stone BA; Behrens DL; Leffet LM; Hobbs FW; Miller JA; Trainor GL
    Nucleic Acids Res; 1996 May; 24(10):1901-7. PubMed ID: 8657572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of 2'-O-(2-N-Methylcarbamoylethyl) Nucleotides in RNase H-Dependent Antisense Oligonucleotides.
    Masaki Y; Iriyama Y; Nakajima H; Kuroda Y; Kanaki T; Furukawa S; Sekine M; Seio K
    Nucleic Acid Ther; 2018 Oct; 28(5):307-311. PubMed ID: 30020852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antisense oligonucleotides selected by hybridisation to scanning arrays are effective reagents in vivo.
    Sohail M; Hochegger H; Klotzbücher A; Guellec RL; Hunt T; Southern EM
    Nucleic Acids Res; 2001 May; 29(10):2041-51. PubMed ID: 11353073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oligonucleotide scanning arrays: application to high-throughput screening for effective antisense reagents and the study of nucleic acid interactions.
    Sohail M; Southern EM
    Adv Biochem Eng Biotechnol; 2002; 77():43-56. PubMed ID: 12227736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic selectivity of complementary nucleic acids: bcr-abl-directed antisense RNA and ribozymes.
    Kronenwett R; Haas R; Sczakiel G
    J Mol Biol; 1996 Jun; 259(4):632-44. PubMed ID: 8683570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hitchhiker's guide to antisense and nonantisense biochemical pathways.
    Branch AD
    Hepatology; 1996 Dec; 24(6):1517-29. PubMed ID: 8938189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA accessibility prediction: a theoretical approach is consistent with experimental studies in cell extracts.
    Scherr M; Rossi JJ; Sczakiel G; Patzel V
    Nucleic Acids Res; 2000 Jul; 28(13):2455-61. PubMed ID: 10871393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alpha beta chimeric antisense oligonucleotides: synthesis and nuclease resistance in biological media.
    Gottikh M; Bertrand JR; Baud-Dematteï MV; Lescot E; Giorgi-Renault S; Shabarova Z; Malvy C
    Antisense Res Dev; 1994; 4(4):251-8. PubMed ID: 7734939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How RNase HI (Escherichia coli) promoted site-selective hydrolysis works on RNA in duplex with carba-LNA and LNA substituted antisense strands in an antisense strategy context?
    Plashkevych O; Li Q; Chattopadhyaya J
    Mol Biosyst; 2017 May; 13(5):921-938. PubMed ID: 28352859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LNA-antisense rivals siRNA for gene silencing.
    Jepsen JS; Wengel J
    Curr Opin Drug Discov Devel; 2004 Mar; 7(2):188-94. PubMed ID: 15603252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.