These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. The mitochondrial free radical theory of aging: a critical view. Sanz A; Stefanatos RK Curr Aging Sci; 2008 Mar; 1(1):10-21. PubMed ID: 20021368 [TBL] [Abstract][Full Text] [Related]
7. Hydroxyl radical generation during mitochondrial electron transfer and the formation of 8-hydroxydesoxyguanosine in mitochondrial DNA. Giulivi C; Boveris A; Cadenas E Arch Biochem Biophys; 1995 Feb; 316(2):909-16. PubMed ID: 7864650 [TBL] [Abstract][Full Text] [Related]
8. Mitochondrial oxidative stress plays a key role in aging and apoptosis. Sastre J; Pallardó FV; Viña J IUBMB Life; 2000 May; 49(5):427-35. PubMed ID: 10902575 [TBL] [Abstract][Full Text] [Related]
9. Oxidative damage and mutation to mitochondrial DNA and age-dependent decline of mitochondrial respiratory function. Wei YH; Lu CY; Lee HC; Pang CY; Ma YS Ann N Y Acad Sci; 1998 Nov; 854():155-70. PubMed ID: 9928427 [TBL] [Abstract][Full Text] [Related]
10. Mitochondrial free radical overproduction due to respiratory chain impairment in the brain of a mouse model of Rett syndrome: protective effect of CNF1. De Filippis B; Valenti D; de Bari L; De Rasmo D; Musto M; Fabbri A; Ricceri L; Fiorentini C; Laviola G; Vacca RA Free Radic Biol Med; 2015 Jun; 83():167-77. PubMed ID: 25708779 [TBL] [Abstract][Full Text] [Related]
11. The role of mitochondrial glutathione in DNA base oxidation. Giulivi C; Cadenas E Biochim Biophys Acta; 1998 Sep; 1366(3):265-74. PubMed ID: 9814840 [TBL] [Abstract][Full Text] [Related]
12. Forty percent methionine restriction decreases mitochondrial oxygen radical production and leak at complex I during forward electron flow and lowers oxidative damage to proteins and mitochondrial DNA in rat kidney and brain mitochondria. Caro P; Gomez J; Sanchez I; Naudi A; Ayala V; López-Torres M; Pamplona R; Barja G Rejuvenation Res; 2009 Dec; 12(6):421-34. PubMed ID: 20041736 [TBL] [Abstract][Full Text] [Related]
13. Mitochondrial production of pro-oxidants and cellular senescence. Sohal RS; Brunk UT Mutat Res; 1992 Sep; 275(3-6):295-304. PubMed ID: 1383771 [TBL] [Abstract][Full Text] [Related]
14. The mitochondrial energy transduction system and the aging process. Navarro A; Boveris A Am J Physiol Cell Physiol; 2007 Feb; 292(2):C670-86. PubMed ID: 17020935 [TBL] [Abstract][Full Text] [Related]
15. Mitochondrial function and redox control in the aging eye: role of MsrA and other repair systems in cataract and macular degenerations. Brennan LA; Kantorow M Exp Eye Res; 2009 Feb; 88(2):195-203. PubMed ID: 18588875 [TBL] [Abstract][Full Text] [Related]
16. Repression of the mitochondrial peroxiredoxin antioxidant system does not shorten life span but causes reduced fitness in Caenorhabditis elegans. Ranjan M; Gruber J; Ng LF; Halliwell B Free Radic Biol Med; 2013 Oct; 63():381-9. PubMed ID: 23722165 [TBL] [Abstract][Full Text] [Related]
18. [The role of reactive oxygen species and mitochondria in aging]. Piotrowska A; Bartnik E Postepy Biochem; 2014; 60(2):240-7. PubMed ID: 25134359 [TBL] [Abstract][Full Text] [Related]
19. Mitochondria induce oxidative stress, generation of reactive oxygen species and redox state unbalance of the eye lens leading to human cataract formation: disruption of redox lens organization by phospholipid hydroperoxides as a common basis for cataract disease. Babizhayev MA Cell Biochem Funct; 2011 Apr; 29(3):183-206. PubMed ID: 21381059 [TBL] [Abstract][Full Text] [Related]