These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 110356)

  • 1. The presence of a Ca2+ bridge within the gamma chain of human fibrinogen.
    Lawrie JS; Kemp G
    Biochim Biophys Acta; 1979 Apr; 577(2):415-23. PubMed ID: 110356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on the structural abnormality of fibrinogen Paris I.
    Mosesson MW; Amrani DL; Ménaché D
    J Clin Invest; 1976 Mar; 57(3):782-90. PubMed ID: 1249208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmic degradation of human fibrinogen. IV. Identification of subunit chain remnants in fragment Y.
    Furlan M; Seelich T; Beck EA
    Biochim Biophys Acta; 1975 Jul; 400(1):112-20. PubMed ID: 125108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the physicochemical properties of fragment D derivatives of fibrinogen and fragment D-D of cross-linked fibrin.
    Marder VJ; Budzynski AZ; Barlow GH
    Biochim Biophys Acta; 1976 Mar; 427(1):1-14. PubMed ID: 130927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of calcium ions on the conformation of fibrinogen fragment D: the use of chemical cross-linking agents.
    Britton DW; Lawrie JS; Kemp GD
    Thromb Res; 1982 Jul; 27(2):167-73. PubMed ID: 6814003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmic degradation of fibrinogen Paris I.
    Budzynski AZ; Marder VJ
    J Lab Clin Med; 1976 Nov; 88(5):817-25. PubMed ID: 978044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification and partial characterization of a D-like fragment from human fibrinogen, produced by human leukocyte elastase.
    Sterrenberg L; Nieuwenhuizen W; Hermans J
    Biochim Biophys Acta; 1983 Jan; 755(2):300-6. PubMed ID: 6550499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmic degradation of human fibrinogen. III. Molecular model of the plasmin-resistant disulfide knot in monomeric fragment D.
    Furlan M; Kemp G; Beck EA
    Biochim Biophys Acta; 1975 Jul; 400(1):95-111. PubMed ID: 125109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification of three gamma-chains with different molecular weights from normal human plasma fibrinogen.
    Francis CW; Keele EM; Marder VJ
    Biochim Biophys Acta; 1984 Mar; 797(3):328-35. PubMed ID: 6696949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasma and platelet fibrinogen differ in gamma chain content.
    Francis CW; Nachman RL; Marder VJ
    Thromb Haemost; 1984 Feb; 51(1):84-8. PubMed ID: 6719392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Electrophoretic fractions and NH2-terminal amino acids of high-molecular tryptic fragments of fibrinogen and fibrin].
    Lugovskoĭ EV; Pozdniakova TM; Varetskaia TV; Derzskaia SG; Tolstykh VM
    Ukr Biokhim Zh; 1976; 48(6):743-9. PubMed ID: 1014141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sialic acid dependent polypeptide chain heterogeneity of human fibrinogen demonstrated by two-dimensional electrophoresis.
    Kuyas C; Haeberli A; Straub PW
    Thromb Haemost; 1982 Feb; 47(1):19-21. PubMed ID: 7071802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification of rat fibrinogen and its constituent chains.
    Van Ruijven-Vermeer IA; Nieuwenhuizen W
    Biochem J; 1978 Mar; 169(3):653-8. PubMed ID: 417720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of calcium on the mobility of gamma-chain from fibrinogen Osaka V on sodium dodecyl sulfate-polyacrylamide gel electrophoresis.
    Yoshida N; Hirata H; Imaoka S; Matsuda M; Yamazumi K; Asakura S
    Thromb Res; 1994 Jan; 73(1):79-82. PubMed ID: 8178317
    [No Abstract]   [Full Text] [Related]  

  • 15. Anticoagulant and calcium-binding properties of high molecular weight derivatives of human fibrinogen, produced by plasmin (fragments X).
    Nieuwenhuizen W; Gravesen M
    Biochim Biophys Acta; 1981 Mar; 668(1):81-8. PubMed ID: 6453618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The NH2-terminal amino acids of the fibrinogen degradation products. Implications for fibrinogen structure.
    Marder VJ; Budzynski AZ
    Thromb Diath Haemorrh Suppl; 1973; 56():127-35. PubMed ID: 4281939
    [No Abstract]   [Full Text] [Related]  

  • 17. Esterification of J chain and its effect on electrophoretic mobility in sodium dodecyl sulfate polyacrylamide gels.
    McCumber LJ; Clem LW
    Biochim Biophys Acta; 1976 Oct; 446(2):536-41. PubMed ID: 825142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cleavage of fibrinogen by the human neutrophil neutral peptide-generating protease.
    Wintroub BU; Coblyn JS; Kaempfer CE; Austen KF
    Proc Natl Acad Sci U S A; 1980 Sep; 77(9):5448-52. PubMed ID: 7001479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Altered mobility of fibrinogen gamma chains and gamma dimer in discontinuous SDS-polyacrylamide electrophoresis.
    Exner T; Speers S; Rickard K
    Thromb Res; 1982 Oct; 28(1):137-42. PubMed ID: 7157227
    [No Abstract]   [Full Text] [Related]  

  • 20. Normal binding of calcium to five fibrinogen variants with mutations in the carboxy terminal part of the gamma-chain.
    Furlan M; Stucki B; Steinmann C; Jungo M; Lämmle B
    Thromb Haemost; 1996 Sep; 76(3):377-83. PubMed ID: 8883274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.