BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 11035642)

  • 1. Lesions do not provoke GFAP-expression in the GFAP-immunonegative areas of the teleost brain.
    Kálmán M; Ajtai BM
    Ann Anat; 2000 Sep; 182(5):459-63. PubMed ID: 11035642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of vimentin and glial fibrillary acidic protein immunoreactivities in the brain of gray mullet (Chelon labrosus), an advanced teleost.
    Arochena M; Anadón R; Díaz-Regueira SM
    J Comp Neurol; 2004 Feb; 469(3):413-36. PubMed ID: 14730591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radial glia in the cerebellum of adult teleost fish: implications for the guidance of migrating new neurons.
    Zupanc GK; Sîrbulescu RF; Ilieş I
    Neuroscience; 2012 May; 210():416-30. PubMed ID: 22465441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Astroglial architecture of the carp (Cyprinus carpio) brain as revealed by immunohistochemical staining against glial fibrillary acidic protein (GFAP).
    Kálmán M
    Anat Embryol (Berl); 1998 Nov; 198(5):409-33. PubMed ID: 9801060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transient coexpression of nestin, GFAP, and vascular endothelial growth factor in mature reactive astroglia following neural grafting or brain wounds.
    Krum JM; Rosenstein JM
    Exp Neurol; 1999 Dec; 160(2):348-60. PubMed ID: 10619552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution of glial fibrillary acidic protein and vimentin-immunopositive elements in the developing chicken brain from hatch to adulthood.
    Kálmán M; Székely AD; Csillag A
    Anat Embryol (Berl); 1998 Sep; 198(3):213-35. PubMed ID: 9764976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glial fibrillary acidic protein-immunopositive structures in the brain of a Crocodilian, Caiman crocodilus, and its bearing on the evolution of astroglia.
    Kálmán M; Pritz MB
    J Comp Neurol; 2001 Mar; 431(4):460-80. PubMed ID: 11223815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of neural stem cells and their progeny in the adult zebrafish optic tectum.
    Ito Y; Tanaka H; Okamoto H; Ohshima T
    Dev Biol; 2010 Jun; 342(1):26-38. PubMed ID: 20346355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative immunohistochemical analysis of human brain basic fibroblast growth factor, glial fibrillary acidic protein and single-stranded DNA expressions following traumatic brain injury.
    Wang Q; Ishikawa T; Michiue T; Zhu BL; Guan DW; Maeda H
    Forensic Sci Int; 2012 Sep; 221(1-3):142-51. PubMed ID: 22607979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in astroglial GLT-1 expression after neural transplantation or stab wounds.
    Krum JM; Phillips TM; Rosenstein JM
    Exp Neurol; 2002 Apr; 174(2):137-49. PubMed ID: 11922656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glial fibrillary acidic protein expression but no glial demarcation follows the lesion in the molecular layer of cerebellum.
    Ajtai BM; Kálmán M
    Brain Res; 1998 Aug; 802(1-2):285-8. PubMed ID: 9748631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of human brain damage in fire fatality by quantification of basic fibroblast growth factor (bFGF), glial fibrillary acidic protein (GFAP) and single-stranded DNA (ssDNA) immunoreactivities.
    Wang Q; Ishikawa T; Michiue T; Zhu BL; Maeda H
    Forensic Sci Int; 2011 Sep; 211(1-3):19-26. PubMed ID: 21530117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution of GFAP immunoreactive structures in the rhombencephalon of the sterlet (Acipenser ruthenus) and its evolutionary implication.
    Kálmán M; Ari C
    J Exp Zool; 2002 Sep; 293(4):395-406. PubMed ID: 12210122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Apparent scarcity of glial fibrillary acidic protein expression in the brain of the pygmy shrew Sorex minutus as revealed by immunocytochemistry.
    Olkowicz S; Bartkowska K; Rychlik L; Turlejski K
    Neurosci Lett; 2004 Sep; 368(2):205-10. PubMed ID: 15351450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of glial fibrillary acidic protein-immunopositive structures in the developing brain of the turtle Mauremys leprosa.
    Kálmán M; Martin-Partido G; Hidalgo-Sanchez M; Majorossy K
    Anat Embryol (Berl); 1997 Jul; 196(1):47-65. PubMed ID: 9242888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution of glial fibrillary acidic protein-immunopositive structures in the brain of the domestic chicken (Gallus domesticus).
    Kálmán M; Székely AD; Csillag A
    J Comp Neurol; 1993 Apr; 330(2):221-37. PubMed ID: 8491869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disappearance of the post-lesional laminin immunopositivity of brain vessels is parallel with the formation of gliovascular junctions and common basal lamina. A double-labelling immunohistochemical study.
    Szabó A; Kálmán M
    Neuropathol Appl Neurobiol; 2004 Apr; 30(2):169-77. PubMed ID: 15043714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution of GFAP+ astrocytes in adult and neonatal rat brain.
    Taft JR; Vertes RP; Perry GW
    Int J Neurosci; 2005 Sep; 115(9):1333-43. PubMed ID: 16048809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Astrocyte activation and Bcl-2 protein expression induced by lipopolysaccharide in mouse brain].
    Deng XH; Liu S; Cai WJ; Lei DL; Luo XG
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2007 Jun; 32(3):401-7. PubMed ID: 17611314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glial expression of estrogen and androgen receptors after rat brain injury.
    García-Ovejero D; Veiga S; García-Segura LM; Doncarlos LL
    J Comp Neurol; 2002 Aug; 450(3):256-71. PubMed ID: 12209854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.