These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 11035796)

  • 1. Binding sites in Escherichia coli dihydrofolate reductase communicate by modulating the conformational ensemble.
    Pan H; Lee JC; Hilser VJ
    Proc Natl Acad Sci U S A; 2000 Oct; 97(22):12020-5. PubMed ID: 11035796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Refolding of [6-19F]tryptophan-labeled Escherichia coli dihydrofolate reductase in the presence of ligand: a stopped-flow NMR spectroscopy study.
    Hoeltzli SD; Frieden C
    Biochemistry; 1998 Jan; 37(1):387-98. PubMed ID: 9425060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ensemble-based signatures of energy propagation in proteins: a new view of an old phenomenon.
    Liu T; Whitten ST; Hilser VJ
    Proteins; 2006 Mar; 62(3):728-38. PubMed ID: 16284972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for a functional role of the dynamics of glycine-121 of Escherichia coli dihydrofolate reductase obtained from kinetic analysis of a site-directed mutant.
    Cameron CE; Benkovic SJ
    Biochemistry; 1997 Dec; 36(50):15792-800. PubMed ID: 9398309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering specificity for folate into dihydrofolate reductase from Escherichia coli.
    Posner BA; Li L; Bethell R; Tsuji T; Benkovic SJ
    Biochemistry; 1996 Feb; 35(5):1653-63. PubMed ID: 8634297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ligand binding to a high-energy partially unfolded protein.
    Kasper JR; Park C
    Protein Sci; 2015 Jan; 24(1):129-37. PubMed ID: 25367157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Allosteric communication in dihydrofolate reductase: signaling network and pathways for closed to occluded transition and back.
    Chen J; Dima RI; Thirumalai D
    J Mol Biol; 2007 Nov; 374(1):250-66. PubMed ID: 17916364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamics and solvent effects on substrate and cofactor binding in Escherichia coli chromosomal dihydrofolate reductase.
    Grubbs J; Rahmanian S; DeLuca A; Padmashali C; Jackson M; Duff MR; Howell EE
    Biochemistry; 2011 May; 50(18):3673-85. PubMed ID: 21462996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The coupling of structural fluctuations to hydride transfer in dihydrofolate reductase.
    Thorpe IF; Brooks CL
    Proteins; 2004 Nov; 57(3):444-57. PubMed ID: 15382243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of unliganded Escherichia coli dihydrofolate reductase. Ligand-induced conformational changes and cooperativity in binding.
    Bystroff C; Kraut J
    Biochemistry; 1991 Feb; 30(8):2227-39. PubMed ID: 1998681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing the roles of conserved arginine-44 of Escherichia coli dihydrofolate reductase in its function and stability by systematic sequence perturbation analysis.
    Yokota A; Takahashi H; Takenawa T; Arai M
    Biochem Biophys Res Commun; 2010 Jan; 391(4):1703-7. PubMed ID: 20043879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Searching sequence space: two different approaches to dihydrofolate reductase catalysis.
    Howell EE
    Chembiochem; 2005 Apr; 6(4):590-600. PubMed ID: 15812782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calorimetric studies of ligand binding in R67 dihydrofolate reductase.
    Jackson M; Chopra S; Smiley RD; Maynord PO; Rosowsky A; London RE; Levy L; Kalman TI; Howell EE
    Biochemistry; 2005 Sep; 44(37):12420-33. PubMed ID: 16156655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defining the role of active-site loop fluctuations in dihydrofolate reductase catalysis.
    McElheny D; Schnell JR; Lansing JC; Dyson HJ; Wright PE
    Proc Natl Acad Sci U S A; 2005 Apr; 102(14):5032-7. PubMed ID: 15795383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ligand-induced conformational changes in the crystal structures of Pneumocystis carinii dihydrofolate reductase complexes with folate and NADP+.
    Cody V; Galitsky N; Rak D; Luft JR; Pangborn W; Queener SF
    Biochemistry; 1999 Apr; 38(14):4303-12. PubMed ID: 10194348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural Characterization of Dihydrofolate Reductase Complexes by Top-Down Ultraviolet Photodissociation Mass Spectrometry.
    Cammarata MB; Thyer R; Rosenberg J; Ellington A; Brodbelt JS
    J Am Chem Soc; 2015 Jul; 137(28):9128-35. PubMed ID: 26125523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic dysfunction in dihydrofolate reductase results from antifolate drug binding: modulation of dynamics within a structural state.
    Mauldin RV; Carroll MJ; Lee AL
    Structure; 2009 Mar; 17(3):386-94. PubMed ID: 19278653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Entropic mechanism of allosteric communication in conformational transitions of dihydrofolate reductase.
    Terada TP; Kimura T; Sasai M
    J Phys Chem B; 2013 Oct; 117(42):12864-77. PubMed ID: 23705773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An essential intermediate in the folding of dihydrofolate reductase.
    Heidary DK; O'Neill JC; Roy M; Jennings PA
    Proc Natl Acad Sci U S A; 2000 May; 97(11):5866-70. PubMed ID: 10811909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Side-chain conformational heterogeneity of intermediates in the Escherichia coli dihydrofolate reductase catalytic cycle.
    Tuttle LM; Dyson HJ; Wright PE
    Biochemistry; 2013 May; 52(20):3464-77. PubMed ID: 23614825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.