These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Amino acid substitutions in the cytochrome P-450 lanosterol 14alpha-demethylase (CYP51A1) from azole-resistant Candida albicans clinical isolates contribute to resistance to azole antifungal agents. Sanglard D; Ischer F; Koymans L; Bille J Antimicrob Agents Chemother; 1998 Feb; 42(2):241-53. PubMed ID: 9527767 [TBL] [Abstract][Full Text] [Related]
4. A newly identified amino acid substitution T123I in the 14α-demethylase (Erg11p) of Candida albicans confers azole resistance. Wu Y; Gao N; Li C; Gao J; Ying C FEMS Yeast Res; 2017 May; 17(3):. PubMed ID: 28334124 [TBL] [Abstract][Full Text] [Related]
5. Multiple amino acid substitutions in lanosterol 14alpha-demethylase contribute to azole resistance in Candida albicans. Favre B; Didmon M; Ryder NS Microbiology (Reading); 1999 Oct; 145 ( Pt 10)():2715-25. PubMed ID: 10537193 [TBL] [Abstract][Full Text] [Related]
6. Y132H substitution in Candida albicans sterol 14alpha-demethylase confers fluconazole resistance by preventing binding to haem. Kelly SL; Lamb DC; Kelly DE FEMS Microbiol Lett; 1999 Nov; 180(2):171-5. PubMed ID: 10556708 [TBL] [Abstract][Full Text] [Related]
7. Contribution of mutations in the cytochrome P450 14alpha-demethylase (Erg11p, Cyp51p) to azole resistance in Candida albicans. Marichal P; Koymans L; Willemsens S; Bellens D; Verhasselt P; Luyten W; Borgers M; Ramaekers FCS; Odds FC; Vanden Bossche H Microbiology (Reading); 1999 Oct; 145 ( Pt 10)():2701-2713. PubMed ID: 10537192 [TBL] [Abstract][Full Text] [Related]
8. Effects of Y132H and F145L substitutions on the activity, azole resistance and spectral properties of Candida albicans sterol 14-demethylase P450 (CYP51): a live example showing the selection of altered P450 through interaction with environmental compounds. Kudo M; Ohi M; Aoyama Y; Nitahara Y; Chung SK; Yoshida Y J Biochem; 2005 May; 137(5):625-32. PubMed ID: 15944416 [TBL] [Abstract][Full Text] [Related]
9. Structural Insights into the Azole Resistance of the Graham DO; Wilson RK; Ruma YN; Keniya MV; Tyndall JDA; Monk BC J Fungi (Basel); 2021 Oct; 7(11):. PubMed ID: 34829185 [TBL] [Abstract][Full Text] [Related]
10. Erg11 mutations associated with azole resistance in clinical isolates of Candida albicans. Xiang MJ; Liu JY; Ni PH; Wang S; Shi C; Wei B; Ni YX; Ge HL FEMS Yeast Res; 2013 Jun; 13(4):386-93. PubMed ID: 23480635 [TBL] [Abstract][Full Text] [Related]
11. Activity of Isavuconazole and Other Azoles against Candida Clinical Isolates and Yeast Model Systems with Known Azole Resistance Mechanisms. Sanglard D; Coste AT Antimicrob Agents Chemother; 2016 Jan; 60(1):229-38. PubMed ID: 26482310 [TBL] [Abstract][Full Text] [Related]
12. Screening for amino acid substitutions in the Candida albicans Erg11 protein of azole-susceptible and azole-resistant clinical isolates: new substitutions and a review of the literature. Morio F; Loge C; Besse B; Hennequin C; Le Pape P Diagn Microbiol Infect Dis; 2010 Apr; 66(4):373-84. PubMed ID: 20226328 [TBL] [Abstract][Full Text] [Related]
13. Contribution of clinically derived mutations in ERG11 to azole resistance in Candida albicans. Flowers SA; Colón B; Whaley SG; Schuler MA; Rogers PD Antimicrob Agents Chemother; 2015 Jan; 59(1):450-60. PubMed ID: 25385095 [TBL] [Abstract][Full Text] [Related]
14. The amino acid substitution N136Y in Candida albicans sterol 14alpha-demethylase is involved in fluconazole resistance. Alvarez-Rueda N; Fleury A; Logé C; Pagniez F; Robert E; Morio F; Le Pape P Med Mycol; 2016 Oct; 54(7):764-775. PubMed ID: 27143634 [TBL] [Abstract][Full Text] [Related]
15. Prevalence of molecular mechanisms of resistance to azole antifungal agents in Candida albicans strains displaying high-level fluconazole resistance isolated from human immunodeficiency virus-infected patients. Perea S; López-Ribot JL; Kirkpatrick WR; McAtee RK; Santillán RA; Martínez M; Calabrese D; Sanglard D; Patterson TF Antimicrob Agents Chemother; 2001 Oct; 45(10):2676-84. PubMed ID: 11557454 [TBL] [Abstract][Full Text] [Related]
16. An A643T mutation in the transcription factor Upc2p causes constitutive ERG11 upregulation and increased fluconazole resistance in Candida albicans. Heilmann CJ; Schneider S; Barker KS; Rogers PD; Morschhäuser J Antimicrob Agents Chemother; 2010 Jan; 54(1):353-9. PubMed ID: 19884367 [TBL] [Abstract][Full Text] [Related]
17. ERG11 mutations and expression of resistance genes in fluconazole-resistant Candida albicans isolates. Xu Y; Sheng F; Zhao J; Chen L; Li C Arch Microbiol; 2015 Nov; 197(9):1087-93. PubMed ID: 26349561 [TBL] [Abstract][Full Text] [Related]
18. Nucleotide substitutions in the Candida albicans ERG11 gene of azole-susceptible and azole-resistant clinical isolates. Strzelczyk JK; Slemp-Migiel A; Rother M; Gołąbek K; Wiczkowski A Acta Biochim Pol; 2013; 60(4):547-52. PubMed ID: 24340302 [TBL] [Abstract][Full Text] [Related]
19. Inhibition of 14 alpha-sterol demethylase activity in Candida albicans Darlington does not correlate with resistance to azole. Hitchcock CA; Barrett-Bee KJ; Russell NJ J Med Vet Mycol; 1987 Oct; 25(5):329-33. PubMed ID: 3323450 [TBL] [Abstract][Full Text] [Related]
20. An Erg11 lanosterol 14-α-demethylase-Arv1 complex is required for Candida albicans virulence. Villasmil ML; Barbosa AD; Cunningham JL; Siniossoglou S; Nickels JT PLoS One; 2020; 15(7):e0235746. PubMed ID: 32678853 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]