These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 11036555)

  • 21. On the biaxial mechanical properties of the layers of the aortic valve leaflet.
    Stella JA; Sacks MS
    J Biomech Eng; 2007 Oct; 129(5):757-66. PubMed ID: 17887902
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aortic valve leaflet mechanical properties facilitate diastolic valve function.
    Koch TM; Reddy BD; Zilla P; Franz T
    Comput Methods Biomech Biomed Engin; 2010; 13(2):225-34. PubMed ID: 19657802
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biaxial mechanical response of bioprosthetic heart valve biomaterials to high in-plane shear.
    Sun W; Sacks MS; Sellaro TL; Slaughter WS; Scott MJ
    J Biomech Eng; 2003 Jun; 125(3):372-80. PubMed ID: 12929242
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anisotropic elasticity and strength of glutaraldehyde fixed bovine pericardium for use in pericardial bioprosthetic valves.
    Zioupos P; Barbenel JC; Fisher J
    J Biomed Mater Res; 1994 Jan; 28(1):49-57. PubMed ID: 8126028
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biaxial strain properties of elastase-digested porcine aortic valves.
    Adamczyk MM; Lee TC; Vesely I
    J Heart Valve Dis; 2000 May; 9(3):445-53. PubMed ID: 10888104
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inflammation and infection in nine surgically explanted Medtronic Freestyle stentless aortic valves.
    Butany J; Zhou T; Leong SW; Cunningham KS; Thangaroopan M; Jegatheeswaran A; Feindel C; David TE
    Cardiovasc Pathol; 2007; 16(5):258-67. PubMed ID: 17868876
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biaxial strain distributions in explanted porcine bioprosthetic valves.
    Adamczyk MM; Vesely I
    J Heart Valve Dis; 2002 Sep; 11(5):688-95. PubMed ID: 12358406
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cyclic loading response of bioprosthetic heart valves: effects of fixation stress state on the collagen fiber architecture.
    Wells SM; Sellaro T; Sacks MS
    Biomaterials; 2005 May; 26(15):2611-9. PubMed ID: 15585264
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simulated bioprosthetic heart valve deformation under quasi-static loading.
    Sun W; Abad A; Sacks MS
    J Biomech Eng; 2005 Nov; 127(6):905-14. PubMed ID: 16438226
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanical and structural properties of a novel hybrid heart valve scaffold for tissue engineering.
    Grabow N; Schmohl K; Khosravi A; Philipp M; Scharfschwerdt M; Graf B; Stamm C; Haubold A; Schmitz KP; Steinhoff G
    Artif Organs; 2004 Nov; 28(11):971-9. PubMed ID: 15504112
    [TBL] [Abstract][Full Text] [Related]  

  • 31. St Jude Epic heart valve bioprostheses versus native human and porcine aortic valves - comparison of mechanical properties.
    Kalejs M; Stradins P; Lacis R; Ozolanta I; Pavars J; Kasyanov V
    Interact Cardiovasc Thorac Surg; 2009 May; 8(5):553-6. PubMed ID: 19190025
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design of Bioprosthetic Aortic Valves using biaxial test data.
    Dabiri Y; Paulson K; Tyberg J; Ronsky J; Ali I; Di Martino E; Narine K
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3319-22. PubMed ID: 26737002
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Internal shear properties of fresh porcine aortic valve cusps: implications for normal valve function.
    Talman EA; Boughner DR
    J Heart Valve Dis; 1996 Mar; 5(2):152-9. PubMed ID: 8665007
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The pulmonary valve. Is it mechanically suitable for use as an aortic valve replacement?
    David H; Boughner DR; Vesely I; Gerosa G
    ASAIO J; 1994; 40(2):206-12. PubMed ID: 8003760
    [TBL] [Abstract][Full Text] [Related]  

  • 35. ADAPT-treated porcine valve tissue (cusp and wall) versus Medtronic Freestyle and Prima Plus: crosslink stability and calcification behavior in the subcutaneous rat model.
    Neethling WM; Glancy R; Hodge AJ
    J Heart Valve Dis; 2004 Jul; 13(4):689-96; discussion 696. PubMed ID: 15311879
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Porcine aortic valve bioprostheses: a morphologic comparison of the effects of fixation pressure.
    Hilbert SL; Barrick MK; Ferrans VJ
    J Biomed Mater Res; 1990 Jun; 24(6):773-87. PubMed ID: 2113925
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tissue damage and calcification may be independent mechanisms of bioprosthetic heart valve failure.
    Vesely I; Barber JE; Ratliff NB
    J Heart Valve Dis; 2001 Jul; 10(4):471-7. PubMed ID: 11499593
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydrodynamic performance of a prototype bioprosthetic valve derived from the pulmonary valve of Phoca groenlandica.
    Agathos EA; Shen M; Styrc W; Giannakopoulou S; Lachanas E; Tomos P
    ASAIO J; 2012; 58(5):535-9. PubMed ID: 22929892
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of finite element analysis to the design of tissue leaflets for a percutaneous aortic valve.
    Smuts AN; Blaine DC; Scheffer C; Weich H; Doubell AF; Dellimore KH
    J Mech Behav Biomed Mater; 2011 Jan; 4(1):85-98. PubMed ID: 21094482
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A structural constitutive model for collagenous cardiovascular tissues incorporating the angular fiber distribution.
    Driessen NJ; Bouten CV; Baaijens FP
    J Biomech Eng; 2005 Jun; 127(3):494-503. PubMed ID: 16060356
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.