These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 11036567)

  • 1. Validity of photoelastic strain measurement on cadaveric proximal femora.
    Glisson RR; Musgrave DS; Graham RD; Vail TP
    J Biomech Eng; 2000 Aug; 122(4):423-9. PubMed ID: 11036567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proximal strain distribution in the loaded femur. An in vitro comparison of the distributions in the intact femur and after insertion of different hip-replacement femoral components.
    Oh I; Harris WH
    J Bone Joint Surg Am; 1978 Jan; 60(1):75-85. PubMed ID: 624762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro analysis of proximal femoral strains using PCA femoral implants and a hip-abductor muscle simulator.
    Finlay JB; Rorabeck CH; Bourne RB; Tew WM
    J Arthroplasty; 1989 Dec; 4(4):335-45. PubMed ID: 2621466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in strain distribution of loaded proximal femora caused by different types of cementless femoral stems.
    Decking R; Puhl W; Simon U; Claes LE
    Clin Biomech (Bristol, Avon); 2006 Jun; 21(5):495-501. PubMed ID: 16457913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of femoral neck length, stem size, and body weight on strains in the proximal cement mantle.
    Harrington MA; O'Connor DO; Lozynsky AJ; Kovach I; Harris WH
    J Bone Joint Surg Am; 2002 Apr; 84(4):573-9. PubMed ID: 11940617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of cortical strain after cemented and press-fit proximal and distal femoral replacement.
    Hua J; Walker PS
    J Orthop Res; 1992 Sep; 10(5):739-44. PubMed ID: 1500986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elastic properties and masticatory bone stress in the macaque mandible.
    Dechow PC; Hylander WL
    Am J Phys Anthropol; 2000 Aug; 112(4):553-74. PubMed ID: 10918129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alterations in femoral strain following hip resurfacing and total hip replacement.
    Deuel CR; Jamali AA; Stover SM; Hazelwood SJ
    J Bone Joint Surg Br; 2009 Jan; 91(1):124-30. PubMed ID: 19092017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High assembly strains and femoral fractures produced during insertion of uncemented femoral components. A cadaver study.
    Jasty M; Henshaw RM; O'Connor DO; Harris WH
    J Arthroplasty; 1993 Oct; 8(5):479-87. PubMed ID: 8245993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Full-field strain measurement during mechanical testing of the human femur at physiologically relevant strain rates.
    Grassi L; Väänänen SP; Yavari SA; Jurvelin JS; Weinans H; Ristinmaa M; Zadpoor AA; Isaksson H
    J Biomech Eng; 2014 Nov; 136(11):. PubMed ID: 25162941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of implant overlap on the mechanical properties of the femur.
    Harris T; Ruth JT; Szivek J; Haywood B
    J Trauma; 2003 May; 54(5):930-5. PubMed ID: 12777906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The medial femoral wall can play a more important role in unstable intertrochanteric fractures compared with lateral femoral wall: a biomechanical study.
    Nie B; Chen X; Li J; Wu D; Liu Q
    J Orthop Surg Res; 2017 Dec; 12(1):197. PubMed ID: 29282138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of strength and strain of the proximal femur by a CT-based finite element method.
    Bessho M; Ohnishi I; Matsuyama J; Matsumoto T; Imai K; Nakamura K
    J Biomech; 2007; 40(8):1745-53. PubMed ID: 17034798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of axial and torsional loading on strain distribution in the proximal femur as related to cementless total hip arthroplasty.
    Otani T; Whiteside LA; White SE
    Clin Orthop Relat Res; 1993 Jul; (292):376-83. PubMed ID: 8519135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Von Mises stresses research of three-fin acetabular components and pelvis bone with segmental bone defect of acetabulum using rosette strain gages method].
    Liu Y; Wang J; Zou D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Mar; 21(3):272-4. PubMed ID: 17419209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hoof position during limb loading affects dorsoproximal bone strains on the equine proximal phalanx.
    Singer E; Garcia T; Stover S
    J Biomech; 2015 Jul; 48(10):1930-6. PubMed ID: 26003484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo strains in the femur of river cooter turtles (Pseudemys concinna) during terrestrial locomotion: tests of force-platform models of loading mechanics.
    Butcher MT; Espinoza NR; Cirilo SR; Blob RW
    J Exp Biol; 2008 Aug; 211(Pt 15):2397-407. PubMed ID: 18626073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. To what extent can linear finite element models of human femora predict failure under stance and fall loading configurations?
    Schileo E; Balistreri L; Grassi L; Cristofolini L; Taddei F
    J Biomech; 2014 Nov; 47(14):3531-8. PubMed ID: 25261321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Position of hip resurfacing component affects strain and resistance to fracture in the femoral neck.
    Vail TP; Glisson RR; Dominguez DE; Kitaoka K; Ottaviano D
    J Bone Joint Surg Am; 2008 Sep; 90(9):1951-60. PubMed ID: 18762656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical stress maps of an artificial femur obtained using a new infrared thermography technique validated by strain gages.
    Shah S; Bougherara H; Schemitsch EH; Zdero R
    Med Eng Phys; 2012 Dec; 34(10):1496-502. PubMed ID: 22430061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.