BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 11037109)

  • 21. Association between CBR1 polymorphisms and NSCLC in the Chinese population.
    Guo Y; Shen Y; Xia Y; Gu J
    Oncol Lett; 2017 Nov; 14(5):6291-6297. PubMed ID: 29113280
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolism of F18, a Derivative of Calanolide A, in Human Liver Microsomes and Cytosol.
    Wu X; Zhang Q; Guo J; Jia Y; Zhang Z; Zhao M; Yang Y; Wang B; Hu J; Sheng L; Li Y
    Front Pharmacol; 2017; 8():479. PubMed ID: 28769808
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aldo-Keto Reductase Regulation by the Nrf2 System: Implications for Stress Response, Chemotherapy Drug Resistance, and Carcinogenesis.
    Penning TM
    Chem Res Toxicol; 2017 Jan; 30(1):162-176. PubMed ID: 27806574
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stereospecific Metabolism of the Tobacco-Specific Nitrosamine, NNAL.
    Kozlovich S; Chen G; Lazarus P
    Chem Res Toxicol; 2015 Nov; 28(11):2112-9. PubMed ID: 26452127
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease.
    Tebay LE; Robertson H; Durant ST; Vitale SR; Penning TM; Dinkova-Kostova AT; Hayes JD
    Free Radic Biol Med; 2015 Nov; 88(Pt B):108-146. PubMed ID: 26122708
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Potential contributions of the tobacco nicotine-derived nitrosamine ketone (NNK) in the pathogenesis of steatohepatitis in a chronic plus binge rat model of alcoholic liver disease.
    Zabala V; Tong M; Yu R; Ramirez T; Yalcin EB; Balbo S; Silbermann E; Deochand C; Nunez K; Hecht S; de la Monte SM
    Alcohol Alcohol; 2015 Mar; 50(2):118-31. PubMed ID: 25618784
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The aldo-keto reductases (AKRs): Overview.
    Penning TM
    Chem Biol Interact; 2015 Jun; 234():236-46. PubMed ID: 25304492
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NNK reduction pathway gene polymorphisms and risk of lung cancer.
    Modesto JL; Hull A; Angstadt AY; Berg A; Gallagher CJ; Lazarus P; Muscat JE
    Mol Carcinog; 2015 Jun; 54 Suppl 1(Suppl 1):E94-E102. PubMed ID: 24976539
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reductive metabolism of nabumetone by human liver microsomal and cytosolic fractions: exploratory prediction using inhibitors and substrates as marker probes.
    Matsumoto K; Hasegawa T; Koyanagi J; Takahashi T; Akimoto M; Sugibayashi K
    Eur J Drug Metab Pharmacokinet; 2015 Jun; 40(2):127-35. PubMed ID: 24659525
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Induction of carbonyl reductase 1 (CBR1) expression in human lung tissues and lung cancer cells by the cigarette smoke constituent benzo[a]pyrene.
    Kalabus JL; Cheng Q; Jamil RG; Schuetz EG; Blanco JG
    Toxicol Lett; 2012 Jun; 211(3):266-73. PubMed ID: 22531821
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Contributions of human enzymes in carcinogen metabolism.
    Rendic S; Guengerich FP
    Chem Res Toxicol; 2012 Jul; 25(7):1316-83. PubMed ID: 22531028
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabolism of bupropion by baboon hepatic and placental microsomes.
    Wang X; Abdelrahman DR; Fokina VM; Hankins GD; Ahmed MS; Nanovskaya TN
    Biochem Pharmacol; 2011 Aug; 82(3):295-303. PubMed ID: 21570381
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genetic variability in the metabolism of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL).
    Ter-Minassian M; Asomaning K; Zhao Y; Chen F; Su L; Carmella SG; Lin X; Hecht SS; Christiani DC
    Int J Cancer; 2012 Mar; 130(6):1338-46. PubMed ID: 21544809
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bupropion metabolism by human placenta.
    Wang X; Abdelrahman DR; Zharikova OL; Patrikeeva SL; Hankins GD; Ahmed MS; Nanovskaya TN
    Biochem Pharmacol; 2010 Jun; 79(11):1684-90. PubMed ID: 20109440
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural basis for substrate specificity in human monomeric carbonyl reductases.
    Pilka ES; Niesen FH; Lee WH; El-Hawari Y; Dunford JE; Kochan G; Wsol V; Martin HJ; Maser E; Oppermann U
    PLoS One; 2009 Oct; 4(10):e7113. PubMed ID: 19841672
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gene expression profiles in HPV-immortalized human cervical cells treated with the nicotine-derived carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone.
    Prokopczyk B; Sinha I; Trushin N; Freeman WM; El-Bayoumy K
    Chem Biol Interact; 2009 Feb; 177(3):173-80. PubMed ID: 19038236
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The aldo-keto reductase superfamily and its role in drug metabolism and detoxification.
    Barski OA; Tipparaju SM; Bhatnagar A
    Drug Metab Rev; 2008; 40(4):553-624. PubMed ID: 18949601
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Purification and characterization of oxidoreductases-catalyzing carbonyl reduction of the tobacco-specific nitrosamine 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK) in human liver cytosol.
    Atalla A; Breyer-Pfaff U; Maser E
    Xenobiotica; 2000 Aug; 30(8):755-69. PubMed ID: 11037109
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Carbonyl reduction of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in cytosol of mouse liver and lung.
    Atalla A; Maser E
    Toxicology; 1999 Nov; 139(1-2):155-66. PubMed ID: 10614696
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of enzymes participating in carbonyl reduction of 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK) in human placenta.
    Atalla A; Maser E
    Chem Biol Interact; 2001 Jan; 130-132(1-3):737-48. PubMed ID: 11306090
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.