These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 11037129)

  • 21. Intracellular Symbiotic Bacteria of Camponotus textor, Forel (Hymenoptera, Formicidae).
    Ramalho MO; Martins C; Silva LM; Martins VG; Bueno OC
    Curr Microbiol; 2017 May; 74(5):589-597. PubMed ID: 28261755
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Defending against parasites: fungus-growing ants combine specialized behaviours and microbial symbionts to protect their fungus gardens.
    Little AE; Murakami T; Mueller UG; Currie CR
    Biol Lett; 2006 Mar; 2(1):12-6. PubMed ID: 17148313
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Black yeast symbionts compromise the efficiency of antibiotic defenses in fungus-growing ants.
    Little AE; Currie CR
    Ecology; 2008 May; 89(5):1216-22. PubMed ID: 18543616
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bacteriocyte dynamics during development of a holometabolous insect, the carpenter ant Camponotus floridanus.
    Stoll S; Feldhaar H; Fraunholz MJ; Gross R
    BMC Microbiol; 2010 Dec; 10():308. PubMed ID: 21122115
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of substrate, ant and fungal species on plant fiber degradation in a fungus-gardening ant symbiosis.
    DeMilto AM; Rouquette M; Mueller UG; Kellner K; Seal JN
    J Insect Physiol; 2017 Apr; 98():301-308. PubMed ID: 28193479
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Community analysis of microbial sharing and specialization in a Costa Rican ant-plant-hemipteran symbiosis.
    Pringle EG; Moreau CS
    Proc Biol Sci; 2017 Mar; 284(1850):. PubMed ID: 28298351
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Ants as mechanical vectors of microorganisms in the School Hospital of the Universidade Federal do Triângulo Mineiro].
    da Costa SB; Pelli A; de Carvalho GP; Oliveira AG; da Silva PR; Teixeira MM; Martins E; Terra AP; Resende EM; da Cunha Hueb Barata de Oliveira C; de Morais CA
    Rev Soc Bras Med Trop; 2006; 39(6):527-9. PubMed ID: 17308696
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The infrabuccal pellet piles of fungus-growing ants.
    Little AE; Murakami T; Mueller UG; Currie CR
    Naturwissenschaften; 2003 Dec; 90(12):558-62. PubMed ID: 14676952
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Studying the Complex Communities of Ants and Their Symbionts Using Ecological Network Analysis.
    Ivens AB; von Beeren C; Blüthgen N; Kronauer DJ
    Annu Rev Entomol; 2016; 61():353-71. PubMed ID: 26982442
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The antennal lobes of fungus-growing ants (Attini): neuroanatomical traits and evolutionary trends.
    Kelber C; Rössler W; Roces F; Kleineidam CJ
    Brain Behav Evol; 2009; 73(4):273-84. PubMed ID: 19641307
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tsetse--A haven for microorganisms.
    Aksoy S
    Parasitol Today; 2000 Mar; 16(3):114-8. PubMed ID: 10689331
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Symbiont recruitment versus ant-symbiont co-evolution in the attine ant-microbe symbiosis.
    Mueller UG
    Curr Opin Microbiol; 2012 Jun; 15(3):269-77. PubMed ID: 22445196
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three cuticular amides in the tripartite symbiosis of leafcutter ants.
    Fladerer JP; Grollitsch S; Bucar F
    Arch Insect Biochem Physiol; 2023 Oct; 114(2):1-13. PubMed ID: 37518892
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Soluble Compounds of Filamentous Fungi Harm the Symbiotic Fungus of Leafcutter Ants.
    Bizarria R; Moia IC; Montoya QV; Polezel DA; Rodrigues A
    Curr Microbiol; 2018 Dec; 75(12):1602-1608. PubMed ID: 30203337
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of caffeine on the survival of leaf-cutting ants Atta sexdens rubropilosa and in vitro growth of their mutualistic fungus.
    Miyashira CH; Tanigushi DG; Gugliotta AM; Santos DY
    Pest Manag Sci; 2012 Jun; 68(6):935-40. PubMed ID: 22323386
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabolic interdependence of obligate intracellular bacteria and their insect hosts.
    Zientz E; Dandekar T; Gross R
    Microbiol Mol Biol Rev; 2004 Dec; 68(4):745-70. PubMed ID: 15590782
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Low host-pathogen specificity in the leaf-cutting ant-microbe symbiosis.
    Taerum SJ; Cafaro MJ; Little AE; Schultz TR; Currie CR
    Proc Biol Sci; 2007 Aug; 274(1621):1971-8. PubMed ID: 17550881
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Symbiosis, dysbiosis and the impact of horizontal exchange on bacterial microbiomes in higher fungus-gardening ants.
    Bringhurst B; Greenwold M; Kellner K; Seal JN
    Sci Rep; 2024 Feb; 14(1):3231. PubMed ID: 38332146
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The fungus gardens of leaf-cutter ants undergo a distinct physiological transition during biomass degradation.
    Huang EL; Aylward FO; Kim YM; Webb-Robertson BJ; Nicora CD; Hu Z; Metz TO; Lipton MS; Smith RD; Currie CR; Burnum-Johnson KE
    Environ Microbiol Rep; 2014 Aug; 6(4):389-95. PubMed ID: 24992538
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Digestive capacities of leaf-cutting ants and the contribution of their fungal cultivar to the degradation of plant material.
    Richard FJ; Mora P; Errard C; Rouland C
    J Comp Physiol B; 2005 Jul; 175(5):297-303. PubMed ID: 15834574
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.