These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 11038067)

  • 41. Cross-bridge kinetics of rabbit single extraocular and limb muscle fibers.
    Li ZB; Rossmanith GH; Hoh JF
    Invest Ophthalmol Vis Sci; 2000 Nov; 41(12):3770-4. PubMed ID: 11053275
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of muscle origin and phenotype on satellite cell muscle-specific gene expression.
    LaFramboise WA; Guthrie RD; Scalise D; Elborne V; Bombach KL; Armanious CS; Magovern JA
    J Mol Cell Cardiol; 2003 Oct; 35(10):1307-18. PubMed ID: 14519440
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [New insights into adult muscle fiber-type diversity: involvement of Six homeoproteins].
    Maire P
    Bull Acad Natl Med; 2015 Jan; 199(1):21-31. PubMed ID: 27236875
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Regulation of skeletal muscle fiber type and slow myosin heavy chain 2 gene expression by inositol trisphosphate receptor 1.
    Jordan T; Jiang H; Li H; DiMario JX
    J Cell Sci; 2005 May; 118(Pt 10):2295-302. PubMed ID: 15870113
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Regionalized expression of myosin isoforms in heterotypic myotubes formed from embryonic and fetal rat myoblasts in vitro.
    Pin CL; Merrifield PA
    Dev Dyn; 1997 Mar; 208(3):420-31. PubMed ID: 9056645
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Determination of slow-tonic MyHC immunoreactivity is an important step in the evaluation of muscle spindles in porcine extraocular muscles.
    Friedrich C; Lemm B; Soukup T; Asmussen G
    Exp Eye Res; 2007 Jul; 85(1):54-64. PubMed ID: 17467694
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Differentiation of original and regenerated skeletal muscle fibres in mdx dystrophic muscles.
    Earnshaw JC; Kyprianou P; Krishan K; Dhoot GK
    Histochem Cell Biol; 2002 Jul; 118(1):19-27. PubMed ID: 12122443
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The role of neural and mechanical influences in maintaining normal fast and slow muscle properties.
    Ohira Y; Yoshinaga T; Ohara M; Kawano F; Wang XD; Higo Y; Terada M; Matsuoka Y; Roy RR; Edgerton VR
    Cells Tissues Organs; 2006; 182(3-4):129-42. PubMed ID: 16914916
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The u-boot mutation identifies a Hedgehog-regulated myogenic switch for fiber-type diversification in the zebrafish embryo.
    Roy S; Wolff C; Ingham PW
    Genes Dev; 2001 Jun; 15(12):1563-76. PubMed ID: 11410536
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effect of a unilateral muscle transplantation on the muscle fiber type and the MyHC isoform content in unoperated hind limb slow and fast muscles of the inbred Lewis rats.
    Zacharová G; Vadászová A; Smerdu V; Asmussen G; Soukup T
    Physiol Res; 2005; 54(6):691-6. PubMed ID: 16351498
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evidence for fusion between cardiac and skeletal muscle cells.
    Reinecke H; Minami E; Poppa V; Murry CE
    Circ Res; 2004 Apr; 94(6):e56-60. PubMed ID: 15001531
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Limitations of nls beta-galactosidase as a marker for studying myogenic lineage or the efficacy of myoblast transfer.
    Yang J; Ontell MP; Kelly R; Watkins SC; Ontell M
    Anat Rec; 1997 May; 248(1):40-50. PubMed ID: 9143666
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Changes in acetylcholine receptor function induce shifts in muscle fiber type composition.
    Jin TE; Wernig A; Witzemann V
    FEBS J; 2008 May; 275(9):2042-54. PubMed ID: 18384381
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Differences in the developmental fate of cultured and noncultured myoblasts when transplanted into embryonic limbs.
    DiMario JX; Stockdale FE
    Exp Cell Res; 1995 Feb; 216(2):431-42. PubMed ID: 7843288
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Musclin gene expression is strongly related to fast-glycolytic phenotype.
    Banzet S; Koulmann N; Sanchez H; Serrurier B; Peinnequin A; Bigard AX
    Biochem Biophys Res Commun; 2007 Feb; 353(3):713-8. PubMed ID: 17189616
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Embryonic, fetal, and neonatal tongue myoblasts exhibit molecular heterogeneity in vitro.
    Dalrymple KR; Prigozy TI; Shuler CF
    Differentiation; 2000 Dec; 66(4-5):218-26. PubMed ID: 11269948
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Obesity-induced discrepancy between contractile and metabolic phenotypes in slow- and fast-twitch skeletal muscles of female obese Zucker rats.
    Acevedo LM; Raya AI; Ríos R; Aguilera-Tejero E; Rivero JL
    J Appl Physiol (1985); 2017 Jul; 123(1):249-259. PubMed ID: 28522764
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mouse soleus (slow) muscle shows greater intramyocellular lipid droplet accumulation than EDL (fast) muscle: fiber type-specific analysis.
    Komiya Y; Sawano S; Mashima D; Ichitsubo R; Nakamura M; Tatsumi R; Ikeuchi Y; Mizunoya W
    J Muscle Res Cell Motil; 2017 Apr; 38(2):163-173. PubMed ID: 28281032
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of hindlimb suspension on the functional properties of slow and fast soleus fibers from three strains of mice.
    Stelzer JE; Widrick JJ
    J Appl Physiol (1985); 2003 Dec; 95(6):2425-33. PubMed ID: 12949008
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phenotype of adult mouse muscle myoblasts reflects their fiber type of origin.
    Rosenblatt JD; Parry DJ; Partridge TA
    Differentiation; 1996 Mar; 60(1):39-45. PubMed ID: 8935927
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.