These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 11038253)

  • 1. The splicing determinants of a regulated exon in the axonal MAP tau reside within the exon and in its upstream intron.
    Wei ML; Memmott J; Screaton G; Andreadis A
    Brain Res Mol Brain Res; 2000 Sep; 80(2):207-18. PubMed ID: 11038253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tau exon 6 is regulated by an intricate interplay of trans factors and cis elements, including multiple branch points.
    Wang J; Tse SW; Andreadis A
    J Neurochem; 2007 Jan; 100(2):437-45. PubMed ID: 17144905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Splicing of a regulated exon reveals additional complexity in the axonal microtubule-associated protein tau.
    Wei ML; Andreadis A
    J Neurochem; 1998 Apr; 70(4):1346-56. PubMed ID: 9523550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of the membrane-binding projection domain of tau protein: splicing regulation of exon 3.
    Arikan MC; Memmott J; Broderick JA; Lafyatis R; Screaton G; Stamm S; Andreadis A
    Brain Res Mol Brain Res; 2002 May; 101(1-2):109-21. PubMed ID: 12007838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tau exon 10, whose missplicing causes frontotemporal dementia, is regulated by an intricate interplay of cis elements and trans factors.
    Wang J; Gao QS; Wang Y; Lafyatis R; Stamm S; Andreadis A
    J Neurochem; 2004 Mar; 88(5):1078-90. PubMed ID: 15009664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complex regulation of tau exon 10, whose missplicing causes frontotemporal dementia.
    Gao QS; Memmott J; Lafyatis R; Stamm S; Screaton G; Andreadis A
    J Neurochem; 2000 Feb; 74(2):490-500. PubMed ID: 10646499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of the membrane-binding domain of tau protein: splicing regulation of exon 2.
    Li K; Arikan MC; Andreadis A
    Brain Res Mol Brain Res; 2003 Aug; 116(1-2):94-105. PubMed ID: 12941465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relative exon affinities and suboptimal splice site signals lead to non-equivalence of two cassette exons.
    Andreadis A; Broderick JA; Kosik KS
    Nucleic Acids Res; 1995 Sep; 23(17):3585-93. PubMed ID: 7567473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An SRp75/hnRNPG complex interacting with hnRNPE2 regulates the 5' splice site of tau exon 10, whose misregulation causes frontotemporal dementia.
    Wang Y; Wang J; Gao L; Stamm S; Andreadis A
    Gene; 2011 Oct; 485(2):130-8. PubMed ID: 21723381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. tau Exon 10 expression involves a bipartite intron 10 regulatory sequence and weak 5' and 3' splice sites.
    D'Souza I; Schellenberg GD
    J Biol Chem; 2002 Jul; 277(29):26587-99. PubMed ID: 12000767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterogeneous nuclear ribonucleoprotein E2 binds to tau exon 10 and moderately activates its splicing.
    Broderick J; Wang J; Andreadis A
    Gene; 2004 Apr; 331():107-14. PubMed ID: 15094196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The polypyrimidine tract binding protein binds upstream of neural cell-specific c-src exon N1 to repress the splicing of the intron downstream.
    Chan RC; Black DL
    Mol Cell Biol; 1997 Aug; 17(8):4667-76. PubMed ID: 9234723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Splicing inhibition of U2AF65 leads to alternative exon skipping.
    Cho S; Moon H; Loh TJ; Jang HN; Liu Y; Zhou J; Ohn T; Zheng X; Shen H
    Proc Natl Acad Sci U S A; 2015 Aug; 112(32):9926-31. PubMed ID: 26216990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 6-bp deletion at the splice donor site of the first intron resulted in aberrant splicing using a cryptic splice site within exon 1 in a patient with succinyl-CoA: 3-Ketoacid CoA transferase (SCOT) deficiency.
    Fukao T; Sakurai S; Rolland MO; Zabot MT; Schulze A; Yamada K; Kondo N
    Mol Genet Metab; 2006 Nov; 89(3):280-2. PubMed ID: 16765626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel intronic cis element, ISE/ISS-3, regulates rat fibroblast growth factor receptor 2 splicing through activation of an upstream exon and repression of a downstream exon containing a noncanonical branch point sequence.
    Hovhannisyan RH; Carstens RP
    Mol Cell Biol; 2005 Jan; 25(1):250-63. PubMed ID: 15601847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Splicing of constitutive upstream introns is essential for the recognition of intra-exonic suboptimal splice sites in the thrombopoietin gene.
    Romano M; Marcucci R; Baralle FE
    Nucleic Acids Res; 2001 Feb; 29(4):886-94. PubMed ID: 11160920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repression of alpha-actinin SM exon splicing by assisted binding of PTB to the polypyrimidine tract.
    Matlin AJ; Southby J; Gooding C; Smith CW
    RNA; 2007 Aug; 13(8):1214-23. PubMed ID: 17592047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exon junction sequences as cryptic splice sites: implications for intron origin.
    Sadusky T; Newman AJ; Dibb NJ
    Curr Biol; 2004 Mar; 14(6):505-9. PubMed ID: 15043816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo splicing of the beta tropomyosin pre-mRNA: a role for branch point and donor site competition.
    Libri D; Balvay L; Fiszman MY
    Mol Cell Biol; 1992 Jul; 12(7):3204-15. PubMed ID: 1620126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cryptic intron activation within the large exon of the mouse polymeric immunoglobulin receptor gene: cryptic splice sites correspond to protein domain boundaries.
    Bruce SR; Kaetzel CS; Peterson ML
    Nucleic Acids Res; 1999 Sep; 27(17):3446-54. PubMed ID: 10446232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.