BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 11038356)

  • 1. A kinetic simulation model that describes catalysis and regulation in nitric-oxide synthase.
    Santolini J; Adak S; Curran CM; Stuehr DJ
    J Biol Chem; 2001 Jan; 276(2):1233-43. PubMed ID: 11038356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular basis for hyperactivity in tryptophan 409 mutants of neuronal NO synthase.
    Adak S; Wang Q; Stuehr DJ
    J Biol Chem; 2000 Jun; 275(23):17434-9. PubMed ID: 10747960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuronal nitric-oxide synthase mutant (Ser-1412 --> Asp) demonstrates surprising connections between heme reduction, NO complex formation, and catalysis.
    Adak S; Santolini J; Tikunova S; Wang Q; Johnson JD; Stuehr DJ
    J Biol Chem; 2001 Jan; 276(2):1244-52. PubMed ID: 11038355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chimeras of nitric-oxide synthase types I and III establish fundamental correlates between heme reduction, heme-NO complex formation, and catalytic activity.
    Adak S; Aulak KS; Stuehr DJ
    J Biol Chem; 2001 Jun; 276(26):23246-52. PubMed ID: 11313363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A tryptophan that modulates tetrahydrobiopterin-dependent electron transfer in nitric oxide synthase regulates enzyme catalysis by additional mechanisms.
    Wang ZQ; Wei CC; Santolini J; Panda K; Wang Q; Stuehr DJ
    Biochemistry; 2005 Mar; 44(12):4676-90. PubMed ID: 15779894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A proximal tryptophan in NO synthase controls activity by a novel mechanism.
    Adak S; Stuehr DJ
    J Inorg Biochem; 2001 Feb; 83(4):301-8. PubMed ID: 11293550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neutralizing a surface charge on the FMN subdomain increases the activity of neuronal nitric-oxide synthase by enhancing the oxygen reactivity of the enzyme heme-nitric oxide complex.
    Haque MM; Fadlalla M; Wang ZQ; Ray SS; Panda K; Stuehr DJ
    J Biol Chem; 2009 Jul; 284(29):19237-47. PubMed ID: 19473991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuronal nitric oxide synthase self-inactivates by forming a ferrous-nitrosyl complex during aerobic catalysis.
    Abu-Soud HM; Wang J; Rousseau DL; Fukuto JM; Ignarro LJ; Stuehr DJ
    J Biol Chem; 1995 Sep; 270(39):22997-3006. PubMed ID: 7559438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron transfer, oxygen binding, and nitric oxide feedback inhibition in endothelial nitric-oxide synthase.
    Abu-Soud HM; Ichimori K; Presta A; Stuehr DJ
    J Biol Chem; 2000 Jun; 275(23):17349-57. PubMed ID: 10749853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. C-terminal tail residue Arg1400 enables NADPH to regulate electron transfer in neuronal nitric-oxide synthase.
    Tiso M; Konas DW; Panda K; Garcin ED; Sharma M; Getzoff ED; Stuehr DJ
    J Biol Chem; 2005 Nov; 280(47):39208-19. PubMed ID: 16150731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tryptophan 409 controls the activity of neuronal nitric-oxide synthase by regulating nitric oxide feedback inhibition.
    Adak S; Crooks C; Wang Q; Crane BR; Tainer JA; Getzoff ED; Stuehr DJ
    J Biol Chem; 1999 Sep; 274(38):26907-11. PubMed ID: 10480900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arginine conversion to nitroxide by tetrahydrobiopterin-free neuronal nitric-oxide synthase. Implications for mechanism.
    Adak S; Wang Q; Stuehr DJ
    J Biol Chem; 2000 Oct; 275(43):33554-61. PubMed ID: 10945985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How does a valine residue that modulates heme-NO binding kinetics in inducible NO synthase regulate enzyme catalysis?
    Wang ZQ; Wei CC; Stuehr DJ
    J Inorg Biochem; 2010 Mar; 104(3):349-56. PubMed ID: 20006999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamic and kinetic analysis of the nitrosyl, carbonyl, and dioxy heme complexes of neuronal nitric-oxide synthase. The roles of substrate and tetrahydrobiopterin in oxygen activation.
    Ost TW; Daff S
    J Biol Chem; 2005 Jan; 280(2):965-73. PubMed ID: 15507439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences in three kinetic parameters underpin the unique catalytic profiles of nitric-oxide synthases I, II, and III.
    Santolini J; Meade AL; Stuehr DJ
    J Biol Chem; 2001 Dec; 276(52):48887-98. PubMed ID: 11684690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A conserved aspartate (Asp-1393) regulates NADPH reduction of neuronal nitric-oxide synthase: implications for catalysis.
    Panda K; Adak S; Konas D; Sharma M; Stuehr DJ
    J Biol Chem; 2004 Apr; 279(18):18323-33. PubMed ID: 14966111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamic characterization of five key kinetic parameters that define neuronal nitric oxide synthase catalysis.
    Haque MM; Tejero J; Bayachou M; Wang ZQ; Fadlalla M; Stuehr DJ
    FEBS J; 2013 Sep; 280(18):4439-53. PubMed ID: 23789902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide-generated P420 nitric oxide synthase: characterization and roles for tetrahydrobiopterin and substrate in protecting against or reversing the P420 conversion.
    Huang L; Abu-Soud HM; Hille R; Stuehr DJ
    Biochemistry; 1999 Feb; 38(6):1912-20. PubMed ID: 10026272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A conserved Val to Ile switch near the heme pocket of animal and bacterial nitric-oxide synthases helps determine their distinct catalytic profiles.
    Wang ZQ; Wei CC; Sharma M; Pant K; Crane BR; Stuehr DJ
    J Biol Chem; 2004 Apr; 279(18):19018-25. PubMed ID: 14976216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of the properties of the heme-NO complexes in nitric-oxide synthase by hydrogen bonding to the proximal cysteine.
    Couture M; Adak S; Stuehr DJ; Rousseau DL
    J Biol Chem; 2001 Oct; 276(41):38280-8. PubMed ID: 11479310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.