These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 11038490)
1. Effects of zinc on the reactive oxygen species generating capacity of human neutrophils and on the serum opsonic activity in vitro. Hasegawa H; Suzuki K; Suzuki K; Nakaji S; Sugawara K Luminescence; 2000; 15(5):321-7. PubMed ID: 11038490 [TBL] [Abstract][Full Text] [Related]
2. Effect of sulphite on the oxidative metabolism of human neutrophils: studies with lucigenin- and luminol-dependent chemiluminescence. Mishra A; Dayal N; Beck-Speier I J Biolumin Chemilumin; 1995; 10(1):9-19. PubMed ID: 7762419 [TBL] [Abstract][Full Text] [Related]
3. Myeloperoxidase-based chemiluminescence of polymorphonuclear leukocytes and monocytes. McNally JA; Bell AL J Biolumin Chemilumin; 1996; 11(2):99-106. PubMed ID: 8726584 [TBL] [Abstract][Full Text] [Related]
4. Effect of interferon-alpha on production of reactive oxygen species by human neutrophils. Koie T; Suzuki K; Shimoyama T; Umeda T; Nakaji S; Sugawara K Luminescence; 2001; 16(1):39-43. PubMed ID: 11180657 [TBL] [Abstract][Full Text] [Related]
5. Effect of linear polarized near-infrared ray irradiation on the chemiluminescence of human neutrophils and serum opsonic activity. Shiraishi M; Suzuki K; Nakaji S; Sugawara K; Sugita N; Suzuki KJ; Ohta S Luminescence; 1999; 14(5):239-43. PubMed ID: 10512987 [TBL] [Abstract][Full Text] [Related]
6. Effects of inhibitors on chicken polymorphonuclear leukocyte oxygenation activity measured by use of selective chemiluminigenic substrates. Merrill GA; Bretthauer R; Wright-Hicks J; Allen RC Comp Med; 2001 Feb; 51(1):16-21. PubMed ID: 11926296 [TBL] [Abstract][Full Text] [Related]
7. Activation of equine neutrophils by phorbol myristate acetate or N-formyl-methionyl-leucyl-phenylalanine induces a different response in reactive oxygen species production and release of active myeloperoxidase. Franck T; Kohnen S; de la Rebière G; Deby-Dupont G; Deby C; Niesten A; Serteyn D Vet Immunol Immunopathol; 2009 Aug; 130(3-4):243-50. PubMed ID: 19328559 [TBL] [Abstract][Full Text] [Related]
8. Laser and serum opsonic activity. Dima VF; Suzuki K; Liu Q; Koie T; Yamada M; Suzuki KJ; Nakaji S; Sugawara K Roum Arch Microbiol Immunol; 1996; 55(4):277-83. PubMed ID: 9558962 [TBL] [Abstract][Full Text] [Related]
9. Analysis and assessment of the capacity of neutrophils to produce reactive oxygen species in a 96-well microplate format using lucigenin- and luminol-dependent chemiluminescence. Hasegawa H; Suzuki K; Nakaji S; Sugawara K J Immunol Methods; 1997 Dec; 210(1):1-10. PubMed ID: 9502580 [TBL] [Abstract][Full Text] [Related]
10. Contribution of nitric oxide synthase to human neutrophil chemiluminescence. Kudoh S; Suzuki K; Yamada M; Liu Q; Nakaji S; Sugawara K Luminescence; 1999; 14(6):335-9. PubMed ID: 10602304 [TBL] [Abstract][Full Text] [Related]
11. Luminol-, isoluminol- and lucigenin-enhanced chemiluminescence of rat blood phagocytes stimulated with different activators. Pavelkova M; Kubala L Luminescence; 2004; 19(1):37-42. PubMed ID: 14981645 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of assays for the measurement of bovine neutrophil reactive oxygen species. Rinaldi M; Moroni P; Paape MJ; Bannerman DD Vet Immunol Immunopathol; 2007 Jan; 115(1-2):107-25. PubMed ID: 17067684 [TBL] [Abstract][Full Text] [Related]
13. Effects of long-distance running on serum opsonic activity measured by chemiluminescence. Saito D; Nakaji S; Umeda T; Kurakake S; Danjo K; Shimoyama T; Sugawara K Luminescence; 2003; 18(2):122-4. PubMed ID: 12687633 [TBL] [Abstract][Full Text] [Related]
14. Effect of exhaustive exercise on human neutrophils in athletes. Yamada M; Suzuki K; Kudo S; Totsuka M; Simoyama T; Nakaji S; Sugawara K Luminescence; 2000; 15(1):15-20. PubMed ID: 10660661 [TBL] [Abstract][Full Text] [Related]
15. The effect of N-acetylcysteine on exercise-induced priming of human neutrophils. A chemiluminescence study. Huupponen MR; Mäkinen LH; Hyvönen PM; Sen CK; Rankinen T; Väisänen S; Rauramaa R Int J Sports Med; 1995 Aug; 16(6):399-403. PubMed ID: 7591392 [TBL] [Abstract][Full Text] [Related]
16. Validation of different chemilumigenic substrates for detecting extracellular generation of reactive oxygen species by phagocytes and endothelial cells. Kopprasch S; Pietzsch J; Graessler J Luminescence; 2003; 18(5):268-73. PubMed ID: 14587078 [TBL] [Abstract][Full Text] [Related]
17. Reactive oxygen species and human spermatozoa: analysis of the cellular mechanisms involved in luminol- and lucigenin-dependent chemiluminescence. Aitken RJ; Buckingham DW; West KM J Cell Physiol; 1992 Jun; 151(3):466-77. PubMed ID: 1338331 [TBL] [Abstract][Full Text] [Related]
19. Effects of lysophospholipids on the generation of reactive oxygen species by fMLP- and PMA-stimulated human neutrophils. Müller J; Petković M; Schiller J; Arnold K; Reichl S; Arnhold J Luminescence; 2002; 17(3):141-9. PubMed ID: 12164363 [TBL] [Abstract][Full Text] [Related]
20. Oxidative metabolism and release of myeloperoxidase from polymorphonuclear leukocytes obtained from blood sedimentation in a Ficoll-Hypaque gradient. Rebecchi IM; Ferreira Novo N; Julian Y; Campa A Cell Biochem Funct; 2000 Jun; 18(2):127-32. PubMed ID: 10814971 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]