These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 11038542)

  • 1. A fast, high resolution, second-order central scheme for incompressible flows.
    Kupferman R; Tadmor E
    Proc Natl Acad Sci U S A; 1997 May; 94(10):4848-52. PubMed ID: 11038542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a discrete gas-kinetic scheme for simulation of two-dimensional viscous incompressible and compressible flows.
    Yang LM; Shu C; Wang Y
    Phys Rev E; 2016 Mar; 93(3):033311. PubMed ID: 27078488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-order weighted essentially nonoscillatory finite-difference formulation of the lattice Boltzmann method in generalized curvilinear coordinates.
    Hejranfar K; Saadat MH; Taheri S
    Phys Rev E; 2017 Feb; 95(2-1):023314. PubMed ID: 28297984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved axisymmetric lattice Boltzmann scheme.
    Li Q; He YL; Tang GH; Tao WQ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 2):056707. PubMed ID: 20866354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiscale kinetic inviscid flux extracted from a gas-kinetic scheme for simulating incompressible and compressible flows.
    Liu S; Cao J; Zhong C
    Phys Rev E; 2020 Sep; 102(3-1):033310. PubMed ID: 33075992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of the moments in advection-diffusion lattice Boltzmann method. I. Truncation dispersion, skewness, and kurtosis.
    Ginzburg I
    Phys Rev E; 2017 Jan; 95(1-1):013304. PubMed ID: 28208379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical simulation of incompressible viscous flow in deforming domains.
    Colella P; Trebotich DP
    Proc Natl Acad Sci U S A; 1999 May; 96(10):5378-81. PubMed ID: 10318891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of an efficient gas kinetic scheme for simulation of two-dimensional incompressible thermal flows.
    Yang LM; Shu C; Yang WM; Wu J
    Phys Rev E; 2018 Jan; 97(1-1):013305. PubMed ID: 29448389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discrete unified gas kinetic scheme for all Knudsen number flows. II. Thermal compressible case.
    Guo Z; Wang R; Xu K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033313. PubMed ID: 25871252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of two-phase liquid-vapor flows using a high-order compact finite-difference lattice Boltzmann method.
    Hejranfar K; Ezzatneshan E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):053305. PubMed ID: 26651814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow past an impulsively started circular cylinder using a higher-order semicompact scheme.
    Sanyasiraju YV; Manjula V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016709. PubMed ID: 16090136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Fourth Order Entropy Stable Scheme for Hyperbolic Conservation Laws.
    Cheng X
    Entropy (Basel); 2019 May; 21(5):. PubMed ID: 33267222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of the moments in advection-diffusion lattice Boltzmann method. II. Attenuation of the boundary layers via double-Λ bounce-back flux scheme.
    Ginzburg I
    Phys Rev E; 2017 Jan; 95(1-1):013305. PubMed ID: 28208489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Periodic boundary conditions for long-time nonequilibrium molecular dynamics simulations of incompressible flows.
    Dobson M
    J Chem Phys; 2014 Nov; 141(18):184103. PubMed ID: 25399128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphing continuum theory for turbulence: Theory, computation, and visualization.
    Chen J
    Phys Rev E; 2017 Oct; 96(4-1):043108. PubMed ID: 29347555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mixed system modeling two-directional pedestrian flows.
    Goatin P; Mimault M
    Math Biosci Eng; 2015 Apr; 12(2):375-92. PubMed ID: 25811441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical simulation of particulate flows using a hybrid of finite difference and boundary integral methods.
    Bhattacharya A; Kesarkar T
    Phys Rev E; 2016 Oct; 94(4-1):043309. PubMed ID: 27841548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the loss of smoothness of the solutions of the Euler equations and the inherent instability of flows of an ideal fluid.
    Yudovich VI
    Chaos; 2000 Sep; 10(3):705-719. PubMed ID: 12779420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Short-time motion of Brownian particles in a shear flow.
    Iwashita T; Yamamoto R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):031401. PubMed ID: 19391938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient two-layer thin-film flow inside a channel.
    Alba K; Laure P; Khayat RE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026320. PubMed ID: 21929103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.