These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 11038542)

  • 21. On the use of stabilizing transformations for detecting unstable periodic orbits in high-dimensional flows.
    Crofts JJ; Davidchack RL
    Chaos; 2009 Sep; 19(3):033138. PubMed ID: 19792018
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Grid sensitivity and role of error in computing a lid-driven cavity problem.
    Suman VK; Viknesh S S; Tekriwal MK; Bhaumik S; Sengupta TK
    Phys Rev E; 2019 Jan; 99(1-1):013305. PubMed ID: 30780239
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lattice Boltzmann simulations of heat transfer in fully developed periodic incompressible flows.
    Wang Z; Shang H; Zhang J
    Phys Rev E; 2017 Jun; 95(6-1):063309. PubMed ID: 28709266
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lattice kinetic scheme for the incompressible viscous thermal flows on arbitrary meshes.
    Peng Y; Shu C; Chew YT; Inamuro T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 2):016703. PubMed ID: 14995751
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-consistent chaotic transport in fluids and plasmas.
    Del-Castillo-Negrete D
    Chaos; 2000 Mar; 10(1):75-88. PubMed ID: 12779364
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Filter-matrix lattice Boltzmann model for microchannel gas flows.
    Zhuo C; Zhong C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):053311. PubMed ID: 24329383
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vorticity generation in creeping flow past a magnetic obstacle.
    Cuevas S; Smolentsev S; Abdou M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 2):056301. PubMed ID: 17279987
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chebyshev collocation spectral lattice Boltzmann method for simulation of low-speed flows.
    Hejranfar K; Hajihassanpour M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):013301. PubMed ID: 25679733
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of the Kelvin-Helmholtz instability in the evolution of magnetized relativistic sheared plasma flows.
    Hamlin ND; Newman WI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043101. PubMed ID: 23679524
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An effective numerical method for solving viscous-inviscid interaction problems.
    Kravtsova MA; Zametaev VB; Ruban AI
    Philos Trans A Math Phys Eng Sci; 2005 May; 363(1830):1157-67. PubMed ID: 16105776
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime: Application to plane boundaries.
    Silva G; Semiao V
    Phys Rev E; 2017 Jul; 96(1-1):013311. PubMed ID: 29347253
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Natural Helmholtz-Hodge Decomposition for Open-Boundary Flow Analysis.
    Bhatia H; Pascucci V; Bremer PT
    IEEE Trans Vis Comput Graph; 2014 Nov; 20(11):1566-78. PubMed ID: 26355335
    [TBL] [Abstract][Full Text] [Related]  

  • 33. General bounce-back scheme for concentration boundary condition in the lattice-Boltzmann method.
    Zhang T; Shi B; Guo Z; Chai Z; Lu J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016701. PubMed ID: 22400695
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Periodic magnetorotational dynamo action as a prototype of nonlinear magnetic-field generation in shear flows.
    Herault J; Rincon F; Cossu C; Lesur G; Ogilvie GI; Longaretti PY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036321. PubMed ID: 22060506
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of the lattice Boltzmann equation and discrete unified gas-kinetic scheme methods for direct numerical simulation of decaying turbulent flows.
    Wang P; Wang LP; Guo Z
    Phys Rev E; 2016 Oct; 94(4-1):043304. PubMed ID: 27841571
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Second Order Multi-Stencil Fast Marching Method with a Non-Constant Local Cost Model.
    Merino-Caviedes S; Cordero-Grande L; Perez MT; Casaseca-de-la-Higuera P; Martin-Fernandez M; Deriche R; Alberola-Lopez C
    IEEE Trans Image Process; 2018 Nov; ():. PubMed ID: 30418903
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Canonical exact coherent structures embedded in high Reynolds number flows.
    Deguchi K; Hall P
    Philos Trans A Math Phys Eng Sci; 2014 Jul; 372(2020):. PubMed ID: 24936006
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microscale boundary conditions of the lattice Boltzmann equation method for simulating microtube flows.
    Zheng L; Guo Z; Shi B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016712. PubMed ID: 23005568
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recursive regularization step for high-order lattice Boltzmann methods.
    Coreixas C; Wissocq G; Puigt G; Boussuge JF; Sagaut P
    Phys Rev E; 2017 Sep; 96(3-1):033306. PubMed ID: 29346972
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Combination of Residual Distribution and the Active Flux Formulations or a New Class of Schemes That Can Combine Several Writings of the Same Hyperbolic Problem: Application to the 1D Euler Equations.
    Abgrall R
    Commun Appl Math Comput; 2023; 5(1):370-402. PubMed ID: 36816474
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.