BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 11039663)

  • 1. Animal models for X-linked sideroblastic anemia.
    Yamamoto M; Nakajima O
    Int J Hematol; 2000 Aug; 72(2):157-64. PubMed ID: 11039663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heme deficiency in erythroid lineage causes differentiation arrest and cytoplasmic iron overload.
    Nakajima O; Takahashi S; Harigae H; Furuyama K; Hayashi N; Sassa S; Yamamoto M
    EMBO J; 1999 Nov; 18(22):6282-9. PubMed ID: 10562540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transgenic rescue of erythroid 5-aminolevulinate synthase-deficient mice results in the formation of ring sideroblasts and siderocytes.
    Nakajima O; Okano S; Harada H; Kusaka T; Gao X; Hosoya T; Suzuki N; Takahashi S; Yamamoto M
    Genes Cells; 2006 Jun; 11(6):685-700. PubMed ID: 16716198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Erythroid 5-aminolevulinate synthase and X-linked sideroblastic anemia.
    Ferreira GC
    J Fla Med Assoc; 1993 Jul; 80(7):481-3. PubMed ID: 8089650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular regulation of 5-aminolevulinate synthase. Diseases related to heme biosynthesis.
    May BK; Bhasker CR; Bawden MJ; Cox TC
    Mol Biol Med; 1990 Oct; 7(5):405-21. PubMed ID: 2095458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. X-linked pyridoxine-responsive sideroblastic anemia due to a Thr388-to-Ser substitution in erythroid 5-aminolevulinate synthase.
    Cox TC; Bottomley SS; Wiley JS; Bawden MJ; Matthews CS; May BK
    N Engl J Med; 1994 Mar; 330(10):675-9. PubMed ID: 8107717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Positional cloning of the zebrafish sauternes gene: a model for congenital sideroblastic anaemia.
    Brownlie A; Donovan A; Pratt SJ; Paw BH; Oates AC; Brugnara C; Witkowska HE; Sassa S; Zon LI
    Nat Genet; 1998 Nov; 20(3):244-50. PubMed ID: 9806542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. X-linked sideroblastic anaemia due to ALAS₂ mutations in the Netherlands: a disease in disguise.
    Donker AE; Raymakers RA; Nieuwenhuis HK; Coenen MJ; Janssen MC; MacKenzie MA; Brons PP; Swinkels DW
    Neth J Med; 2014 May; 72(4):210-7. PubMed ID: 24829177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Late-onset X-linked sideroblastic anemia. Missense mutations in the erythroid delta-aminolevulinate synthase (ALAS2) gene in two pyridoxine-responsive patients initially diagnosed with acquired refractory anemia and ringed sideroblasts.
    Cotter PD; May A; Fitzsimons EJ; Houston T; Woodcock BE; al-Sabah AI; Wong L; Bishop DF
    J Clin Invest; 1995 Oct; 96(4):2090-6. PubMed ID: 7560104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The molecular biology and pyridoxine responsiveness of X-linked sideroblastic anaemia.
    May A; Bishop DF
    Haematologica; 1998 Jan; 83(1):56-70. PubMed ID: 9542324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyridoxine refractory X-linked sideroblastic anemia caused by a point mutation in the erythroid 5-aminolevulinate synthase gene.
    Furuyama K; Fujita H; Nagai T; Yomogida K; Munakata H; Kondo M; Kimura A; Kuramoto A; Hayashi N; Yamamoto M
    Blood; 1997 Jul; 90(2):822-30. PubMed ID: 9226183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Recent progress in iron metabolism and iron-related anemia].
    Harigae H
    Rinsho Byori; 2010 Dec; 58(12):1211-8. PubMed ID: 21348241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 5-Aminolevulinate synthase in sideroblastic anemias: mRNA and enzyme activity levels in bone marrow cells.
    Bottomley SS; Healy HM; Brandenburg MA; May BK
    Am J Hematol; 1992 Oct; 41(2):76-83. PubMed ID: 1415186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Progress of study on sideroblastic anemia and its possible gene therapy--review].
    Wang YQ; Zhu P
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2005 Jun; 13(3):524-8. PubMed ID: 15972158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New mutation in erythroid-specific delta-aminolevulinate synthase as the cause of X-linked sideroblastic anemia responsive to pyridoxine.
    Kucerova J; Horvathova M; Mojzikova R; Belohlavkova P; Cermak J; Divoky V
    Acta Haematol; 2011; 125(4):193-7. PubMed ID: 21252495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple mechanisms for hereditary sideroblastic anemia.
    Furuyama K; Sassa S
    Cell Mol Biol (Noisy-le-grand); 2002 Feb; 48(1):5-10. PubMed ID: 11929048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Four new mutations in the erythroid-specific 5-aminolevulinate synthase (ALAS2) gene causing X-linked sideroblastic anemia: increased pyridoxine responsiveness after removal of iron overload by phlebotomy and coinheritance of hereditary hemochromatosis.
    Cotter PD; May A; Li L; Al-Sabah AI; Fitzsimons EJ; Cazzola M; Bishop DF
    Blood; 1999 Mar; 93(5):1757-69. PubMed ID: 10029606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction between succinyl CoA synthetase and the heme-biosynthetic enzyme ALAS-E is disrupted in sideroblastic anemia.
    Furuyama K; Sassa S
    J Clin Invest; 2000 Mar; 105(6):757-64. PubMed ID: 10727444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arg452 substitution of the erythroid-specific 5-aminolaevulinate synthase, a hot spot mutation in X-linked sideroblastic anaemia, does not itself affect enzyme activity.
    Furuyama K; Harigae H; Heller T; Hamel BC; Minder EI; Shimizu T; Kuribara T; Blijlevens N; Shibahara S; Sassa S
    Eur J Haematol; 2006 Jan; 76(1):33-41. PubMed ID: 16343269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation and tissue-specific expression of δ-aminolevulinic acid synthases in non-syndromic sideroblastic anemias and porphyrias.
    Peoc'h K; Nicolas G; Schmitt C; Mirmiran A; Daher R; Lefebvre T; Gouya L; Karim Z; Puy H
    Mol Genet Metab; 2019 Nov; 128(3):190-197. PubMed ID: 30737140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.