These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 1103989)

  • 21. Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis.
    Zhao H; Jones CL; Baker GA; Xia S; Olubajo O; Person VN
    J Biotechnol; 2009 Jan; 139(1):47-54. PubMed ID: 18822323
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultrasound stimulates ethanol production during the simultaneous saccharification and fermentation of mixed waste office paper.
    Wood BE; Aldrich HC; Ingram LO
    Biotechnol Prog; 1997; 13(3):232-7. PubMed ID: 9190074
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cellulase adsorption and relationship to features of corn stover solids produced by leading pretreatments.
    Kumar R; Wyman CE
    Biotechnol Bioeng; 2009 Jun; 103(2):252-67. PubMed ID: 19195015
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient sugar release by the cellulose solvent-based lignocellulose fractionation technology and enzymatic cellulose hydrolysis.
    Moxley G; Zhu Z; Zhang YH
    J Agric Food Chem; 2008 Sep; 56(17):7885-90. PubMed ID: 18702466
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermophilic Bacillus coagulans requires less cellulases for simultaneous saccharification and fermentation of cellulose to products than mesophilic microbial biocatalysts.
    Ou MS; Mohammed N; Ingram LO; Shanmugam KT
    Appl Biochem Biotechnol; 2009 May; 155(1-3):379-85. PubMed ID: 19156365
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimization of cellulase mixture for efficient hydrolysis of steam-exploded corn stover by statistically designed experiments.
    Zhou J; Wang YH; Chu J; Luo LZ; Zhuang YP; Zhang SL
    Bioresour Technol; 2009 Jan; 100(2):819-25. PubMed ID: 18771915
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Ethanol production from materials containing cellulose: the potential of approaches developed in Russia].
    Rabinovich ML
    Prikl Biokhim Mikrobiol; 2006; 42(1):5-32. PubMed ID: 16521572
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design of highly efficient cellulase mixtures for enzymatic hydrolysis of cellulose.
    Gusakov AV; Salanovich TN; Antonov AI; Ustinov BB; Okunev ON; Burlingame R; Emalfarb M; Baez M; Sinitsyn AP
    Biotechnol Bioeng; 2007 Aug; 97(5):1028-38. PubMed ID: 17221887
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Outlook for cellulase improvement: screening and selection strategies.
    Percival Zhang YH; Himmel ME; Mielenz JR
    Biotechnol Adv; 2006; 24(5):452-81. PubMed ID: 16690241
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetic studies on insoluble cellulose-cellulase system.
    Huang AA
    Biotechnol Bioeng; 1975 Oct; 17(10):1421-33. PubMed ID: 1182273
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitative estimate of the effect of cellulase components during degradation of cotton fibers.
    Wang LS; Zhang YZ; Yang H; Gao PJ
    Carbohydr Res; 2004 Mar; 339(4):819-24. PubMed ID: 14980825
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Immobilization of cellulose fibrils on solid substrates for cellulase-binding studies through quantitative fluorescence microscopy.
    Moran-Mirabal JM; Santhanam N; Corgie SC; Craighead HG; Walker LP
    Biotechnol Bioeng; 2008 Dec; 101(6):1129-41. PubMed ID: 18563846
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Selected aspects of the structure and accessibility of cellulose as they relate to hydrolysis.
    Rowland SP
    Biotechnol Bioeng Symp; 1975; (5):183-91. PubMed ID: 1191741
    [No Abstract]   [Full Text] [Related]  

  • 34. Cellulolytic activities of fungi destroying ancient books.
    Leźnicka S
    Acta Microbiol Pol; 1980; 29(4):375-87. PubMed ID: 6164257
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Methodological analysis for determination of enzymatic digestibility of cellulosic materials.
    Zhang YH; Schell DJ; McMillan JD
    Biotechnol Bioeng; 2007 Jan; 96(1):188-94. PubMed ID: 16952180
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The renewable chemicals industry.
    Christensen CH; Rass-Hansen J; Marsden CC; Taarning E; Egeblad K
    ChemSusChem; 2008; 1(4):283-9. PubMed ID: 18605090
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling intrinsic kinetics of enzymatic cellulose hydrolysis.
    Peri S; Karra S; Lee YY; Karim MN
    Biotechnol Prog; 2007; 23(3):626-37. PubMed ID: 17465526
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems.
    Zhang YH; Lynd LR
    Biotechnol Bioeng; 2004 Dec; 88(7):797-824. PubMed ID: 15538721
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Potential synergies and challenges in refining cellulosic biomass to fuels, chemicals, and power.
    Wyman CE
    Biotechnol Prog; 2003; 19(2):254-62. PubMed ID: 12675557
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Economical factors in the assessment of various cellulosic substances as chemical and energy resources.
    Humphrey AE
    Biotechnol Bioeng Symp; 1975; (5):49-65. PubMed ID: 1191750
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.