These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 11040087)

  • 81. Interflavin one-electron transfer in the inducible nitric oxide synthase reductase domain and NADPH-cytochrome P450 reductase.
    Yamamoto K; Kimura S; Shiro Y; Iyanagi T
    Arch Biochem Biophys; 2005 Aug; 440(1):65-78. PubMed ID: 16009330
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Oxidative modification of aldose reductase induced by copper ion. Definition of the metal-protein interaction mechanism.
    Cecconi I; Scaloni A; Rastelli G; Moroni M; Vilardo PG; Costantino L; Cappiello M; Garland D; Carper D; Petrash JM; Del Corso A; Mura U
    J Biol Chem; 2002 Nov; 277(44):42017-27. PubMed ID: 12183464
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Modelling the catalytic reaction in human aldose reductase.
    Várnai P; Richards WG; Lyne PD
    Proteins; 1999 Nov; 37(2):218-27. PubMed ID: 10584067
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Feruloyl esterase-catalysed synthesis of glycerol sinapate using ionic liquids mixtures.
    Vafiadi C; Topakas E; Nahmias VR; Faulds CB; Christakopoulos P
    J Biotechnol; 2009 Jan; 139(1):124-9. PubMed ID: 18822324
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Structure-based optimization of aldose reductase inhibitors originating from virtual screening.
    Eisenmann M; Steuber H; Zentgraf M; Altenkämper M; Ortmann R; Perruchon J; Klebe G; Schlitzer M
    ChemMedChem; 2009 May; 4(5):809-19. PubMed ID: 19301313
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Two mechanisms for oxidation of cytosolic NADPH by Kluyveromyces lactis mitochondria.
    Overkamp KM; Bakker BM; Steensma HY; van Dijken JP; Pronk JT
    Yeast; 2002 Jul; 19(10):813-24. PubMed ID: 12112236
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Sclerotiorin, from Penicillium frequentans, a potent inhibitor of aldose reductase.
    Chidananda C; Rao LJ; Sattur AP
    Biotechnol Lett; 2006 Oct; 28(20):1633-6. PubMed ID: 16900332
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Glucose-6-phosphate dehydrogenase activity and NADPH/NADP+ ratio in liver and pancreas are dependent on the severity of hyperglycemia in rat.
    Díaz-Flores M; Ibáñez-Hernández MA; Galván RE; Gutiérrez M; Durán-Reyes G; Medina-Navarro R; Pascoe-Lira D; Ortega-Camarillo C; Vilar-Rojas C; Cruz M; Baiza-Gutman LA
    Life Sci; 2006 Apr; 78(22):2601-7. PubMed ID: 16325866
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Synthesis of [5-(4-pyrrol-1-yl-benzoyl)-1 H-pyrrol-2-yl)]-acetic acid and in vitro study of its inhibitory activity on aldose reductase enzyme and on protein glycation.
    Anagnostou C; Nicolaou I; Demopoulos VJ
    Pharmazie; 2002 Jul; 57(7):435-7. PubMed ID: 12168519
    [TBL] [Abstract][Full Text] [Related]  

  • 90. The metabolism of D-glyceraldehyde by the lens.
    Van Heyningen R
    Biochem J; 1969 Apr; 112(2):211-20. PubMed ID: 4389821
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Purification and Properties of an NADPH-Aldose Reductase (Aldehyde Reductase) from Euonymus japonica Leaves.
    Negm FB
    Plant Physiol; 1986 Apr; 80(4):972-7. PubMed ID: 16664750
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Identification of reduced nicotinamide adenine dinucleotide phosphate-dependent aldehyde reductase in a Rhodotorula strain.
    Watson JA; Hayashi JA; Schuytema E; Doughty CC
    J Bacteriol; 1969 Oct; 100(1):110-6. PubMed ID: 4390502
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Fructose, fructose 1-phosphate, and glyceraldehyde breakdown in carbohydrate metabolism.
    Ohrloff C; Zierz S; Hockwin O
    Ophthalmic Res; 1983; 15(1):19-23. PubMed ID: 6856245
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Identification of the reactive cysteine residue in human placenta aldose reductase.
    Liu SQ; Bhatnagar A; Ansari NH; Srivastava SK
    Biochim Biophys Acta; 1993 Aug; 1164(3):268-72. PubMed ID: 8343525
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Catalytic mechanism of aldose reductase studied by the combined potentials of quantum mechanics and molecular mechanics.
    Lee YS; Hodoscek M; Brooks BR; Kador PF
    Biophys Chem; 1998 Mar; 70(3):203-16. PubMed ID: 9546197
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Aldose reductase and the importance of experimental design.
    Crabbe MJ
    Biochem Soc Trans; 2003 Dec; 31(Pt 6):1367-71. PubMed ID: 14641065
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Oxidative damage to human lens enzymes.
    Jedziniak J; Arredondo M; Andley U
    Curr Eye Res; 1987 Feb; 6(2):345-50. PubMed ID: 3568748
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Role of lysine residues in the nucleotides binding to bovine liver high-Km aldehyde reductase.
    Terada T
    Int J Biochem Cell Biol; 1995 May; 27(5):457-67. PubMed ID: 7641075
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Spectrophotometric assay for sensitive detection of glycerol dehydratase activity using aldehyde dehydrogenase.
    Park ES; Park S; Shin JS
    J Biosci Bioeng; 2017 Apr; 123(4):528-533. PubMed ID: 28052817
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Phylogenetic conservation of epitopes in mammalian aldose reductase: application to immunoquantitation.
    Mathur EJ; Grimshaw CE
    Arch Biochem Biophys; 1986 Jun; 247(2):321-7. PubMed ID: 2424371
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.