These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 11040097)

  • 1. Mitochondrial K(ATP) channels: probing molecular identity and pharmacology.
    Terzic A; Dzeja PP; Holmuhamedov EL
    J Mol Cell Cardiol; 2000 Nov; 32(11):1911-5. PubMed ID: 11040097
    [No Abstract]   [Full Text] [Related]  

  • 2. Testosterone induces cytoprotection by activating ATP-sensitive K+ channels in the cardiac mitochondrial inner membrane.
    Er F; Michels G; Gassanov N; Rivero F; Hoppe UC
    Circulation; 2004 Nov; 110(19):3100-7. PubMed ID: 15520315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular composition of mitochondrial ATP-sensitive potassium channels probed by viral Kir gene transfer.
    Seharaseyon J; Ohler A; Sasaki N; Fraser H; Sato T; Johns DC; O'Rourke B; Marbán E
    J Mol Cell Cardiol; 2000 Nov; 32(11):1923-30. PubMed ID: 11185581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of inhibitors and activators of ATP-regulated K+ channel on mitochondrial potassium uniport.
    Szewczyk A; Pikuła S; Nałecz MJ
    Biochem Mol Biol Int; 1996 Mar; 38(3):477-84. PubMed ID: 8829606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cardioprotective effect of diazoxide is mediated by activation of sarcolemmal but not mitochondrial ATP-sensitive potassium channels in mice.
    Duncker DJ; Verdouw PD
    Circulation; 2003 Aug; 108(6):e44; author reply e44. PubMed ID: 12912801
    [No Abstract]   [Full Text] [Related]  

  • 6. Ion conduction pore is conserved among potassium channels.
    Lu Z; Klem AM; Ramu Y
    Nature; 2001 Oct; 413(6858):809-13. PubMed ID: 11677598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective inhibition of inward rectifier K+ channels (Kir2.1 or Kir2.2) abolishes protection by ischemic preconditioning in rabbit ventricular cardiomyocytes.
    Diaz RJ; Zobel C; Cho HC; Batthish M; Hinek A; Backx PH; Wilson GJ
    Circ Res; 2004 Aug; 95(3):325-32. PubMed ID: 15231687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kir6.1 is the principal pore-forming subunit of astrocyte but not neuronal plasma membrane K-ATP channels.
    Thomzig A; Wenzel M; Karschin C; Eaton MJ; Skatchkov SN; Karschin A; Veh RW
    Mol Cell Neurosci; 2001 Dec; 18(6):671-90. PubMed ID: 11749042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adenylate kinase phosphotransfer communicates cellular energetic signals to ATP-sensitive potassium channels.
    Carrasco AJ; Dzeja PP; Alekseev AE; Pucar D; Zingman LV; Abraham MR; Hodgson D; Bienengraeber M; Puceat M; Janssen E; Wieringa B; Terzic A
    Proc Natl Acad Sci U S A; 2001 Jun; 98(13):7623-8. PubMed ID: 11390963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is the molecular composition of K(ATP) channels more complex than originally thought?
    Pountney DJ; Sun ZQ; Porter LM; Nitabach MN; Nakamura TY; Holmes D; Rosner E; Kaneko M; Manaris T; Holmes TC; Coetzee WA
    J Mol Cell Cardiol; 2001 Aug; 33(8):1541-6. PubMed ID: 11448141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Agonist unbinding from receptor dictates the nature of deactivation kinetics of G protein-gated K+ channels.
    Benians A; Leaney JL; Tinker A
    Proc Natl Acad Sci U S A; 2003 May; 100(10):6239-44. PubMed ID: 12719528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular properties of potassium channels.
    Bernardi H; Bidard JN; Fosset M; Hugues M; Mourre C; Rehm H; Romey G; Schmid-Antomarchi H; Schweitz H; de Weille JR
    Arzneimittelforschung; 1989 Jan; 39(1A):159-63. PubMed ID: 2655615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sarcolemmal K(ATP) channels in the heart: molecular mechanisms brought to light, but physiologic consequences still in the dark.
    Flagg TP; Nichols CG
    J Cardiovasc Electrophysiol; 2001 Oct; 12(10):1195-8. PubMed ID: 11699533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Mitochondrial potassium channels: therapeutic possibilities].
    Rybakowska I; Nagel-Starczynowska G; Słomińska E; Chodorowski Z; Smoleński RT; Kaletha K
    Kardiol Pol; 2003 Dec; 59 Suppl 2():II87-90. PubMed ID: 20527132
    [No Abstract]   [Full Text] [Related]  

  • 15. [Molecular mechanism for biological transport in the kidney: K+ channels].
    Kawahara K; Yasuoka Y; Suzuki T
    Nihon Rinsho; 2006 Feb; 64 Suppl 2():123-8. PubMed ID: 16523873
    [No Abstract]   [Full Text] [Related]  

  • 16. Agonists and antagonists of ATP-sensitive potassium channels.
    Lazdunski M; Bernardi H; de Weille JR; Mourre C; Fosset M
    Adv Nephrol Necker Hosp; 1992; 21():195-202. PubMed ID: 1566646
    [No Abstract]   [Full Text] [Related]  

  • 17. Potassium channel subtypes as molecular targets for overactive bladder and other urological disorders.
    Gopalakrishnan M; Shieh CC
    Expert Opin Ther Targets; 2004 Oct; 8(5):437-58. PubMed ID: 15469394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Special issue: ATP sensitive potassium channels.
    Cardiovasc Res; 1994 Jun; 28(6):725-930. PubMed ID: 7923269
    [No Abstract]   [Full Text] [Related]  

  • 19. Structure and functional properties of an inwardly rectifying ATP-regulated K+ channel from rat kidney.
    Hebert SC; Ho K
    Ren Physiol Biochem; 1994; 17(3-4):143-7. PubMed ID: 7518944
    [No Abstract]   [Full Text] [Related]  

  • 20. [K+ channels and lung epithelial physiology].
    Bardou O; Trinh NT; Brochiero E
    Med Sci (Paris); 2009 Apr; 25(4):391-7. PubMed ID: 19409192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.