BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

566 related articles for article (PubMed ID: 11040217)

  • 1. High-resolution localization of Drosophila Spt5 and Spt6 at heat shock genes in vivo: roles in promoter proximal pausing and transcription elongation.
    Andrulis ED; Guzmán E; Döring P; Werner J; Lis JT
    Genes Dev; 2000 Oct; 14(20):2635-49. PubMed ID: 11040217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spt5 and spt6 are associated with active transcription and have characteristics of general elongation factors in D. melanogaster.
    Kaplan CD; Morris JR; Wu C; Winston F
    Genes Dev; 2000 Oct; 14(20):2623-34. PubMed ID: 11040216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae.
    Hartzog GA; Wada T; Handa H; Winston F
    Genes Dev; 1998 Feb; 12(3):357-69. PubMed ID: 9450930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tracking FACT and the RNA polymerase II elongation complex through chromatin in vivo.
    Saunders A; Werner J; Andrulis ED; Nakayama T; Hirose S; Reinberg D; Lis JT
    Science; 2003 Aug; 301(5636):1094-6. PubMed ID: 12934007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HSF recruitment and loss at most Drosophila heat shock loci is coordinated and depends on proximal promoter sequences.
    Shopland LS; Lis JT
    Chromosoma; 1996 Sep; 105(3):158-71. PubMed ID: 8781184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA polymerase II elongation factors of Saccharomyces cerevisiae: a targeted proteomics approach.
    Krogan NJ; Kim M; Ahn SH; Zhong G; Kobor MS; Cagney G; Emili A; Shilatifard A; Buratowski S; Greenblatt JF
    Mol Cell Biol; 2002 Oct; 22(20):6979-92. PubMed ID: 12242279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SPT4, SPT5 and SPT6 interactions: effects on transcription and viability in Saccharomyces cerevisiae.
    Swanson MS; Winston F
    Genetics; 1992 Oct; 132(2):325-36. PubMed ID: 1330823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of Regions in the Spt5 Subunit of DRB Sensitivity-inducing Factor (DSIF) That Are Involved in Promoter-proximal Pausing.
    Qiu Y; Gilmour DS
    J Biol Chem; 2017 Mar; 292(13):5555-5570. PubMed ID: 28213523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NELF and DSIF cause promoter proximal pausing on the hsp70 promoter in Drosophila.
    Wu CH; Yamaguchi Y; Benjamin LR; Horvat-Gordon M; Washinsky J; Enerly E; Larsson J; Lambertsson A; Handa H; Gilmour D
    Genes Dev; 2003 Jun; 17(11):1402-14. PubMed ID: 12782658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HSF access to heat shock elements in vivo depends critically on promoter architecture defined by GAGA factor, TFIID, and RNA polymerase II binding sites.
    Shopland LS; Hirayoshi K; Fernandes M; Lis JT
    Genes Dev; 1995 Nov; 9(22):2756-69. PubMed ID: 7590251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The RNA processing exosome is linked to elongating RNA polymerase II in Drosophila.
    Andrulis ED; Werner J; Nazarian A; Erdjument-Bromage H; Tempst P; Lis JT
    Nature; 2002 Dec 19-26; 420(6917):837-41. PubMed ID: 12490954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drosophila ELL is associated with actively elongating RNA polymerase II on transcriptionally active sites in vivo.
    Gerber M; Ma J; Dean K; Eissenberg JC; Shilatifard A
    EMBO J; 2001 Nov; 20(21):6104-14. PubMed ID: 11689450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorylation of histone H3 at Ser10 facilitates RNA polymerase II release from promoter-proximal pausing in Drosophila.
    Ivaldi MS; Karam CS; Corces VG
    Genes Dev; 2007 Nov; 21(21):2818-31. PubMed ID: 17942706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Domains in the SPT5 protein that modulate its transcriptional regulatory properties.
    Ivanov D; Kwak YT; Guo J; Gaynor RB
    Mol Cell Biol; 2000 May; 20(9):2970-83. PubMed ID: 10757782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual roles for Spt5 in pre-mRNA processing and transcription elongation revealed by identification of Spt5-associated proteins.
    Lindstrom DL; Squazzo SL; Muster N; Burckin TA; Wachter KC; Emigh CA; McCleery JA; Yates JR; Hartzog GA
    Mol Cell Biol; 2003 Feb; 23(4):1368-78. PubMed ID: 12556496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions between DSIF (DRB sensitivity inducing factor), NELF (negative elongation factor), and the Drosophila RNA polymerase II transcription elongation complex.
    Missra A; Gilmour DS
    Proc Natl Acad Sci U S A; 2010 Jun; 107(25):11301-6. PubMed ID: 20534440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human Spt6 stimulates transcription elongation by RNA polymerase II in vitro.
    Endoh M; Zhu W; Hasegawa J; Watanabe H; Kim DK; Aida M; Inukai N; Narita T; Yamada T; Furuya A; Sato H; Yamaguchi Y; Mandal SS; Reinberg D; Wada T; Handa H
    Mol Cell Biol; 2004 Apr; 24(8):3324-36. PubMed ID: 15060154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exchange of RNA polymerase II initiation and elongation factors during gene expression in vivo.
    Pokholok DK; Hannett NM; Young RA
    Mol Cell; 2002 Apr; 9(4):799-809. PubMed ID: 11983171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Negative elongation factor accelerates the rate at which heat shock genes are shut off by facilitating dissociation of heat shock factor.
    Ghosh SK; Missra A; Gilmour DS
    Mol Cell Biol; 2011 Oct; 31(20):4232-43. PubMed ID: 21859888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical Analysis of Yeast Suppressor of Ty 4/5 (Spt4/5) Reveals the Importance of Nucleic Acid Interactions in the Prevention of RNA Polymerase II Arrest.
    Crickard JB; Fu J; Reese JC
    J Biol Chem; 2016 May; 291(19):9853-70. PubMed ID: 26945063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.