These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 11040394)

  • 1. Removal mechanisms of VOCs in an activated sludge process.
    Hsieh CC
    J Hazard Mater; 2000 Dec; 79(1-2):173-87. PubMed ID: 11040394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal mechanisms of volatile organic compounds (VOCs) from effluent of common effluent treatment plant (CETP).
    Padalkar AV; Kumar R
    Chemosphere; 2018 May; 199():569-584. PubMed ID: 29455126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A laboratory batch reactor test for assessing nonspeciated volatile organic compound biodegradation in activated sludge.
    Cano ML; Saterbak A; van Compernolle R; Williams MP; Huot ME; Rhodes IA; Allen CC
    Water Environ Res; 2003; 75(4):342-54. PubMed ID: 12934828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating the capacity of an activated sludge process to reduce volatile organic compounds and odor emissions.
    Barbosa V; Hobbs P; Sneath R; Burgess J; Callan J; Stuetz R
    Water Environ Res; 2006 Aug; 78(8):842-51. PubMed ID: 17059138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sorption and biodegradation of vapor-phase organic compounds with wastewater sludge and food waste compost.
    Kim HJ; Cho KS; Park JW; Goltz MN; Khim JH; Kim JY
    J Air Waste Manag Assoc; 2001 Aug; 51(8):1237-44. PubMed ID: 11518298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of substrate Henry's constant on biofilter performance.
    Zhu X; Suidan MT; Pruden A; Yang C; Alonso C; Kim BJ; Kim BR
    J Air Waste Manag Assoc; 2004 Apr; 54(4):409-18. PubMed ID: 15115369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Absorption and biodegradation of hydrophobic volatile organic compounds: determination of Henry's constants and biodegradation levels.
    Darracq G; Couvert A; Couriol C; Amrane A; Le Cloirec P
    Water Sci Technol; 2009; 59(7):1315-22. PubMed ID: 19380996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bio-oxidation of airborne volatile organic compounds in an activated sludge aeration tank.
    Chou MS; Chang HY
    J Air Waste Manag Assoc; 2005 May; 55(5):604-11. PubMed ID: 15991669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of rotating drum biofilter for volatile organic compound removal at high organic loading rates.
    Yang C; Chen H; Zeng G; Zhu X; Suidan MT
    J Environ Sci (China); 2008; 20(3):285-90. PubMed ID: 18595394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time and space patterns of volatile organic compounds in a sewage treatment plant.
    Escalas A; Guadayol JM; Cortina M; Rivera J; Caixach J
    Water Res; 2003 Sep; 37(16):3913-20. PubMed ID: 12909110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Aerobic biodegradation performance of six volatile organic compounds by activated sludge acclimated with toluene].
    Zhang H; Hu H; Xi J
    Huan Jing Ke Xue; 2003 Nov; 24(6):83-9. PubMed ID: 14768571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adequate model complexity for scenario analysis of VOC stripping in a trickling filter.
    Vanhooren H; Verbrugge T; Boeije G; Demey D; Vanrolleghem PA
    Water Sci Technol; 2001; 43(7):29-38. PubMed ID: 11385860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing potential modifications to the activated sludge process to improve simultaneous removal of a diverse range of micropollutants.
    Petrie B; McAdam EJ; Lester JN; Cartmell E
    Water Res; 2014 Oct; 62():180-92. PubMed ID: 24956600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Partition of volatile organic compounds in activated sludge and wastewater.
    Lin JH; Chou MS
    J Air Waste Manag Assoc; 2006 Aug; 56(8):1083-90. PubMed ID: 16933640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of steroid estrogens in carbonaceous and nitrifying activated sludge processes.
    McAdam EJ; Bagnall JP; Koh YK; Chiu TY; Pollard S; Scrimshaw MD; Lester JN; Cartmell E
    Chemosphere; 2010 Sep; 81(1):1-6. PubMed ID: 20719356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomass accumulation patterns for removing volatile organic compounds in rotating drum biofilters.
    Yang C; Suidan MT; Zhu X; Kim BJ
    Water Sci Technol; 2003; 48(8):89-96. PubMed ID: 14682574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fates of chlorinated volatile organic compounds in aerobic biological treatment processes: the effects of aeration and sludge addition.
    Chen WH; Yang WB; Yuan CS; Yang JC; Zhao QL
    Chemosphere; 2014 May; 103():92-8. PubMed ID: 24321332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term operation of submerged membrane bioreactor (MBR) for the treatment of synthetic wastewater containing styrene as volatile organic compound (VOC): Effect of hydraulic retention time (HRT).
    Fallah N; Bonakdarpour B; Nasernejad B; Alavi Moghadam MR
    J Hazard Mater; 2010 Jun; 178(1-3):718-24. PubMed ID: 20207478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Capability of microalgae-based wastewater treatment systems to remove emerging organic contaminants: a pilot-scale study.
    Matamoros V; Gutiérrez R; Ferrer I; García J; Bayona JM
    J Hazard Mater; 2015 May; 288():34-42. PubMed ID: 25682515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.