BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 11040981)

  • 1. [Fluorescence, excited by light in the 380-540 nm wavelength range, in in cucumber leaves depends on the time of vegetation and light regime].
    Zavoruev VV; Zavorueva EN; Shelegov AV
    Biofizika; 2000; 45(4):704-11. PubMed ID: 11040981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The ontogenetic approach to chlorophyll fluorescence studies of plant photosynthetic apparatus under stressful conditions].
    Nesterenko TV; Tikhomirov AA
    Biofizika; 2005; 50(2):335-40. PubMed ID: 15856994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Growth and development of cucumber Cucumis sativus L. in the prereproductive period under long photoperiods].
    Shibaeva TG; Markovskaia EF
    Ontogenez; 2013; 44(2):101-9. PubMed ID: 23785847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Separation of light-induced linear, cyclic and stroma-sourced electron fluxes to P700+ in cucumber leaf discs after pre-illumination at a chilling temperature.
    Fan DY; Hope AB; Jia H; Chow WS
    Plant Cell Physiol; 2008 Jun; 49(6):901-11. PubMed ID: 18426807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative photobiology of growth responses to two UV-B wavebands and UV-C in dim-red-light- and white-light-grown cucumber (Cucumis sativus) seedlings: physiological evidence for photoreactivation.
    Shinkle JR; Derickson DL; Barnes PW
    Photochem Photobiol; 2005; 81(5):1069-74. PubMed ID: 15960589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effects of sustained chilling and low light on gas exchange, chlorophyll fluorescence quenching and absorbed light allocation in cucumber leaves].
    Zhou YH; Huang LF; Yu JQ
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2004 Apr; 30(2):153-60. PubMed ID: 15599040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chloroplast Cu/Zn-superoxide dismutase is a highly sensitive site in cucumber leaves chilled in the light.
    Choi SM; Jeong SW; Jeong WJ; Kwon SY; Chow WS; Park YI
    Planta; 2002 Dec; 216(2):315-24. PubMed ID: 12447546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of time and intensity of supplemental blue lighting during morning twilight on growth and physiological performance of cucumber seedlings.
    Sung IK; Kiyota M; Hirano T
    Life Support Biosph Sci; 1998; 5(2):137-42. PubMed ID: 11541669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus.
    Wang H; Gu M; Cui J; Shi K; Zhou Y; Yu J
    J Photochem Photobiol B; 2009 Jul; 96(1):30-7. PubMed ID: 19410482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of photoinhibition and temperature on carotenoids in sorghum leaves.
    Sharma PK; Hall DO
    Indian J Biochem Biophys; 1996 Dec; 33(6):471-7. PubMed ID: 9219432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light.
    Hogewoning SW; Trouwborst G; Maljaars H; Poorter H; van Ieperen W; Harbinson J
    J Exp Bot; 2010 Jun; 61(11):3107-17. PubMed ID: 20504875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Chlorophyll fluorescence induction and estimation of plant resistance to stress factors].
    Nesterenko TV; Tikhomirov AA; Shikhov VN
    Zh Obshch Biol; 2007; 68(6):444-58. PubMed ID: 18257288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes of alternative oxidase activity, capacity and protein content in leaves of Cucumis sativus wild-type and MSC16 mutant grown under different light intensities.
    Florez-Sarasa I; Ostaszewska M; Galle A; Flexas J; Rychter AM; Ribas-Carbo M
    Physiol Plant; 2009 Dec; 137(4):419-26. PubMed ID: 19493308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photosynthetic characteristics of rice leaves grown under red light with or without supplemental blue light.
    Matsuda R; Ohashi-Kaneko K; Fujiwara K; Goto E; Kurata K
    Plant Cell Physiol; 2004 Dec; 45(12):1870-4. PubMed ID: 15653806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of blue light on leaf mesophyll conductance.
    Loreto F; Tsonev T; Centritto M
    J Exp Bot; 2009; 60(8):2283-90. PubMed ID: 19395388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of chlorophyll fluorescence to the apparent vegetation reflectance.
    Campbell PK; Middleton EM; Corp LA; Kim MS
    Sci Total Environ; 2008 Oct; 404(2-3):433-9. PubMed ID: 18164750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in the room-temperature emission spectrum of chlorophyll during fast and slow phases of the Kautsky effect in intact leaves.
    Franck F; Dewez D; Popovic R
    Photochem Photobiol; 2005; 81(2):431-6. PubMed ID: 15584772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laser-induced fluorescence ratios of Cajanus cajan L. under the stress of cadmium and its correlation with pigment content and pigment ratios.
    Maurya R; Gopal R
    Appl Spectrosc; 2008 Apr; 62(4):433-8. PubMed ID: 18416903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional role of red (retro)-carotenoids as passive light filters in the leaves of Buxus sempervirens L.: increased protection of photosynthetic tissues?
    Hormaetxe K; Becerril JM; Fleck I; Pintó M; García-Plazaola JI
    J Exp Bot; 2005 Oct; 56(420):2629-36. PubMed ID: 16105855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Response of transglutaminase activity and bound putrescine to changes in light intensity under natural or controlled conditions in Quercus ilex leaves.
    Pintó-Marijuan M; de Agazio M; Zacchini M; Santos MA; Torné JM; Fleck I
    Physiol Plant; 2007 Sep; 131(1):159-69. PubMed ID: 18251934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.