These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 11040981)
41. Co-ordination of hydraulic and stomatal conductances across light qualities in cucumber leaves. Savvides A; Fanourakis D; van Ieperen W J Exp Bot; 2012 Feb; 63(3):1135-43. PubMed ID: 22121201 [TBL] [Abstract][Full Text] [Related]
42. In vivo noninvasive detection of chlorophyll distribution in cucumber (Cucumis sativus) leaves by indices based on hyperspectral imaging. Zou X; Shi J; Hao L; Zhao J; Mao H; Chen Z; Li Y; Holmes M Anal Chim Acta; 2011 Nov; 706(1):105-12. PubMed ID: 21995916 [TBL] [Abstract][Full Text] [Related]
43. Responses of epidermal phenolic compounds to light acclimation: in vivo qualitative and quantitative assessment using chlorophyll fluorescence excitation spectra in leaves of three woody species. Bidel LP; Meyer S; Goulas Y; Cadot Y; Cerovic ZG J Photochem Photobiol B; 2007 Sep; 88(2-3):163-79. PubMed ID: 17720509 [TBL] [Abstract][Full Text] [Related]
44. Daily light integral and day light quality: Potentials and pitfalls of nighttime UV treatments on cucumber powdery mildew. Suthaparan A; Solhaug KA; Stensvand A; Gislerød HR J Photochem Photobiol B; 2017 Oct; 175():141-148. PubMed ID: 28886570 [TBL] [Abstract][Full Text] [Related]
45. A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus. Yu JQ; Huang LF; Hu WH; Zhou YH; Mao WH; Ye SF; Nogués S J Exp Bot; 2004 May; 55(399):1135-43. PubMed ID: 15107450 [TBL] [Abstract][Full Text] [Related]
46. [Fluorescence parameters of chlorophyll in leaves of caules plants in different environmental conditions]. Iakovleva OV; Talipova EV; Kukarskikh GP; Krendeleeva TE; Rubin AB Biofizika; 2005; 50(6):1112-9. PubMed ID: 16358792 [TBL] [Abstract][Full Text] [Related]
47. Effects of blue light deficiency on acclimation of light energy partitioning in PSII and CO2 assimilation capacity to high irradiance in spinach leaves. Matsuda R; Ohashi-Kaneko K; Fujiwara K; Kurata K Plant Cell Physiol; 2008 Apr; 49(4):664-70. PubMed ID: 18349045 [TBL] [Abstract][Full Text] [Related]
48. Optical properties of rhodoxanthin accumulated in Aloe arborescens Mill. leaves under high-light stress with special reference to its photoprotective function. Merzlyak M; Solovchenko A; Pogosyan S Photochem Photobiol Sci; 2005 Apr; 4(4):333-40. PubMed ID: 15803203 [TBL] [Abstract][Full Text] [Related]
49. On phytochrome absorption and the phytochrome photoequilibrium in a green leaf: environmental sensitivity and photoequilibrium time. Rivadossi A; Garlaschi FM; Casazza AP; Zucchelli G; Jennings RC Photochem Photobiol Sci; 2008 Aug; 7(8):986-90. PubMed ID: 18688507 [TBL] [Abstract][Full Text] [Related]
50. [Effects of high concentration manganese on active oxygen production and antioxidant enzyme activities in cucumber leaves under different irradiations]. Shi QH; Zhu ZJ; Wang YC; Wang P; Wang XF Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2006 Jun; 32(3):325-9. PubMed ID: 16775401 [TBL] [Abstract][Full Text] [Related]
51. Uptake and translocation of metals in Spinacia oleracea L. grown on tannery sludge-amended and contaminated soils: effect on lipid peroxidation, morpho-anatomical changes and antioxidants. Sinha S; Mallick S; Misra RK; Singh S; Basant A; Gupta AK Chemosphere; 2007 Feb; 67(1):176-87. PubMed ID: 17095039 [TBL] [Abstract][Full Text] [Related]
52. Rapid chlorophyll a fluorescence transient of Lemna gibba leaf as an indication of light and hydroxylamine effect on photosystem II activity. Dewez D; Ali NA; Perreault F; Popovic R Photochem Photobiol Sci; 2007 May; 6(5):532-8. PubMed ID: 17487305 [TBL] [Abstract][Full Text] [Related]
53. Irreversible damage to photosystem I by chilling in the light: cause of the degradation of chlorophyll after returning to normal growth temperature. Kudoh H; Sonoike K Planta; 2002 Aug; 215(4):541-8. PubMed ID: 12172835 [TBL] [Abstract][Full Text] [Related]
54. Excitation energy transfer from phycobiliprotein to chlorophyll d in intact cells of Acaryochloris marina studied by time- and wavelength-resolved fluorescence spectroscopy. Petrásek Z; Schmitt FJ; Theiss C; Huyer J; Chen M; Larkum A; Eichler HJ; Kemnitz K; Eckert HJ Photochem Photobiol Sci; 2005 Dec; 4(12):1016-22. PubMed ID: 16307116 [TBL] [Abstract][Full Text] [Related]
55. Hyperspectral Imaging for Determining Pigment Contents in Cucumber Leaves in Response to Angular Leaf Spot Disease. Zhao YR; Li X; Yu KQ; Cheng F; He Y Sci Rep; 2016 Jun; 6():27790. PubMed ID: 27283050 [TBL] [Abstract][Full Text] [Related]
56. Sensitivity of Seven Diverse Species to Blue and Green Light: Interactions with Photon Flux. Snowden MC; Cope KR; Bugbee B PLoS One; 2016; 11(10):e0163121. PubMed ID: 27706176 [TBL] [Abstract][Full Text] [Related]
57. [Investigation of exciting light and plant leaves age effects on chlorophyll fluorescense of radish plants]. Nesterenko TV; Tikhomirov AA; Shikhov VN Biofizika; 2012; 57(4):614-20. PubMed ID: 23035526 [TBL] [Abstract][Full Text] [Related]
58. Changes in the ratio between the peaks of red chlorophyll fluorescence in leaves of Populus balsamifera during vegetation. Zavoruev VV; Zavorueva EN Dokl Biochem Biophys; 2002; 387():310-2. PubMed ID: 12577610 [No Abstract] [Full Text] [Related]
59. An ontogenetic approach to the assessment of plant resistance to stress factors based on the method of chlorophyll fluorescence induction. Nesterenko TV; Tikhomirov AA Dokl Biochem Biophys; 2003; 388():4-7. PubMed ID: 12741123 [No Abstract] [Full Text] [Related]
60. Simplification of a light-based model for estimating final internode length in greenhouse cucumber canopies. Kahlen K; Stützel H Ann Bot; 2011 Oct; 108(6):1055-63. PubMed ID: 21642233 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]