These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 11041141)

  • 1. Comparison of capillary and test tube procedures for analysis of thermal inactivation kinetics of mold spores.
    Fujikawa H; Morozumi S; Smerage GH; Teixeira AA
    J Food Prot; 2000 Oct; 63(10):1404-9. PubMed ID: 11041141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tailing of thermal inactivation curve of Aspergillus niger spores.
    Fujikawa H; Itoh T
    Appl Environ Microbiol; 1996 Oct; 62(10):3745-9. PubMed ID: 8837430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-pressure pulses for Aspergillus niger spore inactivation in a model pharmaceutical lipid emulsion.
    Brito-Bazán E; Ascanio G; Iñiguez-Moreno M; Calderón-Santoyo M; Córdova-Aguilar MS; Brito-de la Fuente E; Ragazzo-Sánchez JA
    Int J Food Microbiol; 2023 Aug; 399():110255. PubMed ID: 37210954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combination of supercritical CO
    Gomez-Gomez A; Brito-de la Fuente E; Gallegos C; Garcia-Perez JV; Benedito J
    Ultrason Sonochem; 2021 Aug; 76():105636. PubMed ID: 34192660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relation between germination and mycelium growth of individual fungal spores.
    Gougouli M; Koutsoumanis KP
    Int J Food Microbiol; 2013 Feb; 161(3):231-9. PubMed ID: 23337123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerated death kinetics of Aspergillus niger spores under high-pressure carbonation.
    Shimoda M; Kago H; Kojima N; Miyake M; Osajima Y; Hayakawa I
    Appl Environ Microbiol; 2002 Aug; 68(8):4162-7. PubMed ID: 12147527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of thermal inactivation kinetics of microorganisms with a continuous microflow apparatus.
    Loss CR; Hotchkiss JH
    J Food Prot; 2004 Nov; 67(11):2560-4. PubMed ID: 15553642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inactivation of food spoilage fungi by ultra violet (UVC) irradiation.
    Begum M; Hocking AD; Miskelly D
    Int J Food Microbiol; 2009 Jan; 129(1):74-7. PubMed ID: 19059664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying the effect of water activity and storage temperature on single spore lag times of three moulds isolated from spoiled bakery products.
    Dagnas S; Gougouli M; Onno B; Koutsoumanis KP; Membré JM
    Int J Food Microbiol; 2017 Jan; 240():75-84. PubMed ID: 27325576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linking aggregation of Aspergillus niger spores to surface electrostatics: a theoretical approach.
    Wargenau A; Kampen I; Kwade A
    Biointerphases; 2013 Dec; 8(1):7. PubMed ID: 24706122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal inactivation of Aspergillus flavus in peanut kernels as influenced by temperature, water activity and heating rate.
    Zhang S; Zhang L; Lan R; Zhou X; Kou X; Wang S
    Food Microbiol; 2018 Dec; 76():237-244. PubMed ID: 30166147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Survival of spores of Rhizopus stolonifer, Aspergillus niger, Botrytis cinerea and Alternaria alternata after exposure to ethanol solutions at various temperatures.
    Mlikota Gabler F; Mansour MF; Smilanick JL; Mackey BE
    J Appl Microbiol; 2004; 96(6):1354-60. PubMed ID: 15139929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exposure of microorganisms to simulated extraterrestrial space ecology.
    Silverman GJ; Davis NS; Keller WH
    Life Sci Space Res; 1964; 2():372-84. PubMed ID: 11883445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal inactivation parameters of spores from different phylogenetic groups of Bacillus cereus.
    Luu-Thi H; Khadka DB; Michiels CW
    Int J Food Microbiol; 2014 Oct; 189():183-8. PubMed ID: 25171111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of dose, irradiance and growth conditions on Aspergillus niger (renamed A. brasiliensis) spores low-pressure (LP) UV inactivation.
    Taylor-Edmonds L; Lichi T; Rotstein-Mayer A; Mamane H
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(4):341-7. PubMed ID: 25723059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inactivation of Aspergillus niger in mango nectar by high-pressure homogenization combined with heat shock.
    Tribst AA; Franchi MA; Cristianini M; de Massaguer PR
    J Food Sci; 2009; 74(9):M509-14. PubMed ID: 20492122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling germination of fungal spores at constant and fluctuating temperature conditions.
    Gougouli M; Koutsoumanis KP
    Int J Food Microbiol; 2012 Jan; 152(3):153-61. PubMed ID: 21885146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of pigmentation in protecting Aspergillus niger conidiospores against pulsed light radiation.
    Esbelin J; Mallea S; Ram AF; Carlin F
    Photochem Photobiol; 2013; 89(3):758-61. PubMed ID: 23278805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Permeabilization and inhibition of the germination of spores of Aspergillus niger for gluconic acid production from glucose.
    Ramachandran S; Fontanille P; Pandey A; Larroche C
    Bioresour Technol; 2008 Jul; 99(11):4559-65. PubMed ID: 17889524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of antioxidant enzymes in survival of conidiospores of Aspergillus niger 26 under conditions of temperature stress.
    Abrashev R; Dolashka P; Christova R; Stefanova L; Angelova M
    J Appl Microbiol; 2005; 99(4):902-9. PubMed ID: 16162242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.