These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 11041203)

  • 41. Focused Ultrasound Treatment of a Spheroid In Vitro Tumour Model.
    Landgraf L; Kozlowski A; Zhang X; Fournelle M; Becker FJ; Tretbar S; Melzer A
    Cells; 2022 Apr; 11(9):. PubMed ID: 35563823
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Tumor growth in vivo and as multicellular spheroids compared by mathematical models.
    Marusić M; Bajzer Z; Vuk-Pavlović S; Freyer JP
    Bull Math Biol; 1994 Jul; 56(4):617-31. PubMed ID: 8054889
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nonlinear diffusion of a growth inhibitory factor in multicell spheroids.
    Chaplain MA; Benson DL; Maini PK
    Math Biosci; 1994 May; 121(1):1-13. PubMed ID: 8204987
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Viscoelastic modeling of the fusion of multicellular tumor spheroids in growth phase.
    Dechristé G; Fehrenbach J; Griseti E; Lobjois V; Poignard C
    J Theor Biol; 2018 Oct; 454():102-109. PubMed ID: 29775683
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The migration of cells in multicell tumor spheroids.
    Pettet GJ; Please CP; Tindall MJ; McElwain DL
    Bull Math Biol; 2001 Mar; 63(2):231-57. PubMed ID: 11276525
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Short-term spheroid culture of primary colorectal cancer cells as an in vitro model for personalizing cancer medicine.
    Jeppesen M; Hagel G; Glenthoj A; Vainer B; Ibsen P; Harling H; Thastrup O; Jørgensen LN; Thastrup J
    PLoS One; 2017; 12(9):e0183074. PubMed ID: 28877221
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mathematical Model of Tumour Spheroid Experiments with Real-Time Cell Cycle Imaging.
    Jin W; Spoerri L; Haass NK; Simpson MJ
    Bull Math Biol; 2021 Mar; 83(5):44. PubMed ID: 33743088
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Radiation effects in spheroids of cells exposed to alpha emitters.
    Charlton DE
    Int J Radiat Biol; 2000 Nov; 76(11):1555-64. PubMed ID: 11098858
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The exponential-Gompertzian tumor growth model: data from six tumor cell lines in vitro and in vivo. Estimate of the transition point from exponential to Gompertzian growth and potential clinical implications.
    Demicheli R; Pratesi G; Foroni R
    Tumori; 1991 Jun; 77(3):189-95. PubMed ID: 1862544
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dose dependence of the growth rate of multicellular tumour spheroids after irradiation.
    Guirado D; Aranda M; Vilches M; Villalobos M; Lallena AM
    Br J Radiol; 2003 Feb; 76(902):109-16. PubMed ID: 12642279
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Autologous spheroid culture: a screening tool for human brain tumour invasion.
    de Ridder L; Cornelissen M; de Ridder D
    Crit Rev Oncol Hematol; 2000; 36(2-3):107-22. PubMed ID: 11033301
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Minimal Morphoelastic Models of Solid Tumour Spheroids: A Tutorial.
    Walker BJ; Celora GL; Goriely A; Moulton DE; Byrne HM
    Bull Math Biol; 2023 Mar; 85(5):38. PubMed ID: 36991173
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A three-dimensional cell culture model for bovine endometrium: regeneration of a multicellular spheroid using ascorbate.
    Yamauchi N; Yamada O; Takahashi T; Imai K; Sato T; Ito A; Hashizume K
    Placenta; 2003; 24(2-3):258-69. PubMed ID: 12566253
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mathematical modelling of microtumour infiltration based on in vitro experiments.
    Luján E; Guerra LN; Soba A; Visacovsky N; Gandía D; Calvo JC; Suárez C
    Integr Biol (Camb); 2016 Aug; 8(8):879-85. PubMed ID: 27466056
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Restructuring dynamics of DU 145 and LNCaP prostate cancer spheroids.
    Song H; Jain SK; Enmon RM; O'Connor KC
    In Vitro Cell Dev Biol Anim; 2004; 40(8-9):262-7. PubMed ID: 15723561
    [TBL] [Abstract][Full Text] [Related]  

  • 56. On the surviving fraction in irradiated multicellular tumour spheroids: calculation of overall radiosensitivity parameters, influence of hypoxia and volume effects.
    Horas JA; Olguin OR; Rizzotto MG
    Phys Med Biol; 2005 Apr; 50(8):1689-701. PubMed ID: 15815090
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Spatio-temporal pattern formation on spherical surfaces: numerical simulation and application to solid tumour growth.
    Chaplain MA; Ganesh M; Graham IG
    J Math Biol; 2001 May; 42(5):387-423. PubMed ID: 11419617
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mathematical modelling of the spatio-temporal response of cytotoxic T-lymphocytes to a solid tumour.
    Matzavinos A; Chaplain MA; Kuznetsov VA
    Math Med Biol; 2004 Mar; 21(1):1-34. PubMed ID: 15065736
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Differential effects of the insulin-like growth factor I receptor on radiosensitivity and spontaneous necrosis formation of human glioblastoma cells grown in multicellular spheroids.
    Watanabe H; Miura M; Sasaki T
    Exp Cell Res; 1999 Jul; 250(1):99-111. PubMed ID: 10388524
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A quantitative cellular automaton model of in vitro multicellular spheroid tumour growth.
    Piotrowska MJ; Angus SD
    J Theor Biol; 2009 May; 258(2):165-78. PubMed ID: 19248794
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.