BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 11041550)

  • 1. Functional incorporation of exogenous proteins into the Xenopus oocyte membrane does not depend on intracellular calcium increase.
    Gal B; Ivorra I; Morales A
    Pflugers Arch; 2000 Oct; 440(6):852-7. PubMed ID: 11041550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of release of Ca2+ from intracellular stores in response to ionomycin in oocytes of the frog Xenopus laevis.
    Yoshida S; Plant S
    J Physiol; 1992 Dec; 458():307-18. PubMed ID: 1302268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein orientation affects the efficiency of functional protein transplantation into the xenopus oocyte membrane.
    Ivorra I; Fernández A; Gal B; Aleu J; González-Ros JM; Ferragut JA; Morales A
    J Membr Biol; 2002 Jan; 185(2):117-27. PubMed ID: 11891570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stimulation of Ca(2+)-dependent membrane currents in Xenopus oocytes by microinjection of pyrimidine nucleotide-glucose conjugates.
    Kim HY; Thomas D; Hanley MR
    Mol Pharmacol; 1996 Feb; 49(2):360-4. PubMed ID: 8632770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporation of acetylcholine receptors and Cl- channels in Xenopus oocytes injected with Torpedo electroplaque membranes.
    Marsal J; Tigyi G; Miledi R
    Proc Natl Acad Sci U S A; 1995 May; 92(11):5224-8. PubMed ID: 7761478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The acetylcholinesterase inhibitor BW284c51 is a potent blocker of Torpedo nicotinic AchRs incorporated into the Xenopus oocyte membrane.
    Olivera-Bravo S; Ivorra I; Morales A
    Br J Pharmacol; 2005 Jan; 144(1):88-97. PubMed ID: 15644872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel Cl- currents elicited by follicle stimulating hormone and acetylcholine in follicle-enclosed Xenopus oocytes.
    Arellano RO; Miledi R
    J Gen Physiol; 1993 Nov; 102(5):833-57. PubMed ID: 8301259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potentiation of a slow Ca(2+)-dependent K+ current by intracellular Ca2+ chelators in hippocampal CA1 neurons of rat brain slices.
    Zhang L; Pennefather P; Velumian A; Tymianski M; Charlton M; Carlen PL
    J Neurophysiol; 1995 Dec; 74(6):2225-41. PubMed ID: 8747186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Ca2+ in H+ transport by rabbit gastric glands studied with A23187 and BAPTA, an incorporated Ca2+ chelator.
    Michelangeli F; Ruiz MC; Fernández E; Ciarrocchi A
    Biochim Biophys Acta; 1989 Jul; 983(1):82-90. PubMed ID: 2503036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupling of L-type calcium channels to neurotransmitter release at mouse motor nerve terminals.
    Urbano FJ; Depetris RS; Uchitel OD
    Pflugers Arch; 2001 Mar; 441(6):824-31. PubMed ID: 11316267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of L-type Ca2+ current by fast and slow Ca2+ buffering in guinea pig ventricular cardiomyocytes.
    You Y; Pelzer DJ; Pelzer S
    Biophys J; 1997 Jan; 72(1):175-87. PubMed ID: 8994602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of whole-cell currents elicited by mechanical stimulation of Xenopus oocytes.
    Saitou T; Ishikawa T; Obara K; Nakayama K
    Pflugers Arch; 2000 Oct; 440(6):858-65. PubMed ID: 11041551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of cannabidiol on the function of α7-nicotinic acetylcholine receptors.
    Mahgoub M; Keun-Hang SY; Sydorenko V; Ashoor A; Kabbani N; Al Kury L; Sadek B; Howarth CF; Isaev D; Galadari S; Oz M
    Eur J Pharmacol; 2013 Nov; 720(1-3):310-9. PubMed ID: 24140434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of calcium mobilization in mediation of acetylcholine-evoked chloride currents in Xenopus laevis oocytes.
    Dascal N; Gillo B; Lass Y
    J Physiol; 1985 Sep; 366():299-313. PubMed ID: 2414433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chelation of intracellular Ca2+ inhibits murine keratinocyte differentiation in vitro.
    Li L; Tucker RW; Hennings H; Yuspa SH
    J Cell Physiol; 1995 Apr; 163(1):105-14. PubMed ID: 7896886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium influx factor (CIF) as a diffusible messenger for the activation of capacitative calcium entry in Xenopus oocytes.
    Kim HY; Hanley MR
    Mol Cells; 1999 Jun; 9(3):326-32. PubMed ID: 10420994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BAPTA-AM dramatically improves maturation and development of bovine oocytes from grade-3 cumulus-oocyte complexes.
    Hu H; Mo X; Li X; Fu X; Hou Y
    Mol Reprod Dev; 2018 Jan; 85(1):38-45. PubMed ID: 29205619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular calcium chelator BAPTA protects cells against toxic calcium overload but also alters physiological calcium responses.
    Collatz MB; Rüdel R; Brinkmeier H
    Cell Calcium; 1997 Jun; 21(6):453-9. PubMed ID: 9223681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular injection of a Ca2+ chelator prevents generation of anoxic LTP.
    Crépel V; Ben-Ari Y
    J Neurophysiol; 1996 Feb; 75(2):770-9. PubMed ID: 8714651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Translation of exogenous messenger RNA coding for nicotinic acetylcholine receptors produces functional receptors in Xenopus oocytes.
    Barnard EA; Miledi R; Sumikawa K
    Proc R Soc Lond B Biol Sci; 1982 May; 215(1199):241-6. PubMed ID: 6127706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.