BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 11041863)

  • 1. Functional hydrogen-bonding map of the minor groove binding tracks of six DNA polymerases.
    Morales JC; Kool ET
    Biochemistry; 2000 Oct; 39(42):12979-88. PubMed ID: 11041863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Varied Molecular Interactions at the Active Sites of Several DNA Polymerases: Nonpolar Nucleoside Isosteres as Probes.
    Morales JC; Kool ET
    J Am Chem Soc; 2000 Feb; 122(6):1001-1007. PubMed ID: 20882113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of hydrogen bonds between Escherichia coli DNA polymerase I (Klenow fragment) and the minor groove of DNA by amino acid substitution of the polymerase and atomic substitution of the DNA.
    Spratt TE
    Biochemistry; 2001 Mar; 40(9):2647-52. PubMed ID: 11258875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Steady-state and pre-steady-state kinetic analysis of 8-oxo-7,8-dihydroguanosine triphosphate incorporation and extension by replicative and repair DNA polymerases.
    Einolf HJ; Schnetz-Boutaud N; Guengerich FP
    Biochemistry; 1998 Sep; 37(38):13300-12. PubMed ID: 9748338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fidelity of mispair formation and mispair extension is dependent on the interaction between the minor groove of the primer terminus and Arg668 of DNA polymerase I of Escherichia coli.
    McCain MD; Meyer AS; Schultz SS; Glekas A; Spratt TE
    Biochemistry; 2005 Apr; 44(15):5647-59. PubMed ID: 15823023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing minor groove hydrogen bonding interactions between RB69 DNA polymerase and DNA.
    Xia S; Christian TD; Wang J; Konigsberg WH
    Biochemistry; 2012 May; 51(21):4343-53. PubMed ID: 22571765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A unified DNA- and dNTP-binding mode for DNA polymerases.
    Singh K; Modak MJ
    Trends Biochem Sci; 1998 Aug; 23(8):277-81. PubMed ID: 9757823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The steric hypothesis for DNA replication and fluorine hydrogen bonding revisited in light of structural data.
    Egli M
    Acc Chem Res; 2012 Aug; 45(8):1237-46. PubMed ID: 22524491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of nucleotide insertion and extension at 8-oxo-7,8-dihydroguanine by replicative T7 polymerase exo- and human immunodeficiency virus-1 reverse transcriptase using steady-state and pre-steady-state kinetics.
    Furge LL; Guengerich FP
    Biochemistry; 1997 May; 36(21):6475-87. PubMed ID: 9174365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into the effect of minor groove interactions and metal cofactors on mutagenic replication by human DNA polymerase β.
    Koag MC; Lee S
    Biochem J; 2018 Feb; 475(3):571-585. PubMed ID: 29301983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structures of ternary complexes of rat DNA polymerase beta, a DNA template-primer, and ddCTP.
    Pelletier H; Sawaya MR; Kumar A; Wilson SH; Kraut J
    Science; 1994 Jun; 264(5167):1891-903. PubMed ID: 7516580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional evidence for a small and rigid active site in a high fidelity DNA polymerase: probing T7 DNA polymerase with variably sized base pairs.
    Kim TW; Brieba LG; Ellenberger T; Kool ET
    J Biol Chem; 2006 Jan; 281(4):2289-95. PubMed ID: 16311403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structures of an N-terminal fragment from Moloney murine leukemia virus reverse transcriptase complexed with nucleic acid: functional implications for template-primer binding to the fingers domain.
    Najmudin S; Coté ML; Sun D; Yohannan S; Montano SP; Gu J; Georgiadis MM
    J Mol Biol; 2000 Feb; 296(2):613-32. PubMed ID: 10669612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evading the proofreading machinery of a replicative DNA polymerase: induction of a mutation by an environmental carcinogen.
    Perlow RA; Broyde S
    J Mol Biol; 2001 Jun; 309(2):519-36. PubMed ID: 11371169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An open and closed case for all polymerases.
    Doublié S; Sawaya MR; Ellenberger T
    Structure; 1999 Feb; 7(2):R31-5. PubMed ID: 10368292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of a DNA analog of the primer for HIV-1 RT second strand synthesis.
    Han GW; Kopka ML; Cascio D; Grzeskowiak K; Dickerson RE
    J Mol Biol; 1997 Jun; 269(5):811-26. PubMed ID: 9223643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA structure and polymerase fidelity.
    Timsit Y
    J Mol Biol; 1999 Nov; 293(4):835-53. PubMed ID: 10543971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA ligases ensure fidelity by interrogating minor groove contacts.
    Liu P; Burdzy A; Sowers LC
    Nucleic Acids Res; 2004; 32(15):4503-11. PubMed ID: 15328364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Importance of terminal base pair hydrogen-bonding in 3'-end proofreading by the Klenow fragment of DNA polymerase I.
    Morales JC; Kool ET
    Biochemistry; 2000 Mar; 39(10):2626-32. PubMed ID: 10704212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vertical-scanning mutagenesis of a critical tryptophan in the minor groove binding track of HIV-1 reverse transcriptase. Molecular nature of polymerase-nucleic acid interactions.
    Beard WA; Bebenek K; Darden TA; Li L; Prasad R; Kunkel TA; Wilson SH
    J Biol Chem; 1998 Nov; 273(46):30435-42. PubMed ID: 9804810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.