These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 11042119)
1. Role of non-covalent enzyme-substrate interactions in the reaction catalysed by cellobiose phosphorylase from Cellulomonas uda. Nidetzky B; Eis C; Albert M Biochem J; 2000 Nov; 351 Pt 3(Pt 3):649-59. PubMed ID: 11042119 [TBL] [Abstract][Full Text] [Related]
2. Efficient chemoenzymatic oligosaccharide synthesis by reverse phosphorolysis using cellobiose phosphorylase and cellodextrin phosphorylase from Clostridium thermocellum. Nakai H; Hachem MA; Petersen BO; Westphal Y; Mannerstedt K; Baumann MJ; Dilokpimol A; Schols HA; Duus JØ; Svensson B Biochimie; 2010 Dec; 92(12):1818-26. PubMed ID: 20678539 [TBL] [Abstract][Full Text] [Related]
3. Substrate-binding recognition and specificity of trehalose phosphorylase from Schizophyllum commune examined in steady-state kinetic studies with deoxy and deoxyfluoro substrate analogues and inhibitors. Eis C; Nidetzky B Biochem J; 2002 Apr; 363(Pt 2):335-40. PubMed ID: 11931662 [TBL] [Abstract][Full Text] [Related]
4. Examining the role of phosphate in glycosyl transfer reactions of Cellulomonas uda cellobiose phosphorylase using D-glucal as donor substrate. Wildberger P; Brecker L; Nidetzky B Carbohydr Res; 2012 Jul; 356():224-32. PubMed ID: 22591555 [TBL] [Abstract][Full Text] [Related]
5. Binding energy and specificity in the catalytic mechanism of yeast aldose reductases. Nidetzky B; Mayr P; Hadwiger P; Stütz AE Biochem J; 1999 Nov; 344 Pt 1(Pt 1):101-7. PubMed ID: 10548539 [TBL] [Abstract][Full Text] [Related]
6. Mechanism, mutagenesis, and chemical rescue of a beta-mannosidase from cellulomonas fimi. Zechel DL; Reid SP; Stoll D; Nashiru O; Warren RA; Withers SG Biochemistry; 2003 Jun; 42(23):7195-204. PubMed ID: 12795616 [TBL] [Abstract][Full Text] [Related]
7. Asp-196-->Ala mutant of Leuconostoc mesenteroides sucrose phosphorylase exhibits altered stereochemical course and kinetic mechanism of glucosyl transfer to and from phosphate. Schwarz A; Nidetzky B FEBS Lett; 2006 Jul; 580(16):3905-10. PubMed ID: 16797542 [TBL] [Abstract][Full Text] [Related]
8. Structural basis for the substrate specificity of a Bacillus 1,3-1,4-beta-glucanase. Gaiser OJ; Piotukh K; Ponnuswamy MN; Planas A; Borriss R; Heinemann U J Mol Biol; 2006 Apr; 357(4):1211-25. PubMed ID: 16483609 [TBL] [Abstract][Full Text] [Related]
9. Recruitment of both uniform and differential binding energy in enzymatic catalysis: xylanases from families 10 and 11. Wicki J; Schloegl J; Tarling CA; Withers SG Biochemistry; 2007 Jun; 46(23):6996-7005. PubMed ID: 17503782 [TBL] [Abstract][Full Text] [Related]
10. Alpha-retaining glucosyl transfer catalysed by trehalose phosphorylase from Schizophyllum commune: mechanistic evidence obtained from steady-state kinetic studies with substrate analogues and inhibitors. Nidetzky B; Eis C Biochem J; 2001 Dec; 360(Pt 3):727-36. PubMed ID: 11736665 [TBL] [Abstract][Full Text] [Related]
11. Synthesis of three hetero disaccharides, 4-O-beta-glucopyranosyl-6-deoxy-D-glucose, 4-O-beta-D-glucopyranosyl-D-mannosamine, and 4-O-beta-D-glucopyranosyl-D-mannose, and confirmation of their structures by C-13 NMR and MS. Tariq MA; Hayashi K Biochem Biophys Res Commun; 1995 Sep; 214(2):568-75. PubMed ID: 7677766 [TBL] [Abstract][Full Text] [Related]
12. 1-(3-Deoxy-3-fluoro-beta-d-glucopyranosyl) pyrimidine derivatives as inhibitors of glycogen phosphorylase b: Kinetic, crystallographic and modelling studies. Tsirkone VG; Tsoukala E; Lamprakis C; Manta S; Hayes JM; Skamnaki VT; Drakou C; Zographos SE; Komiotis D; Leonidas DD Bioorg Med Chem; 2010 May; 18(10):3413-25. PubMed ID: 20430629 [TBL] [Abstract][Full Text] [Related]
13. Mechanism of Bacillus 1,3-1,4-beta-D-glucan 4-glucanohydrolases: kinetics and pH studies with 4-methylumbelliferyl beta-D-glucan oligosaccharides. Malet C; Planas A Biochemistry; 1997 Nov; 36(45):13838-48. PubMed ID: 9374861 [TBL] [Abstract][Full Text] [Related]
14. Reaction on D-glucal by an inverting phosphorylase to synthesize derivatives of 2-deoxy-beta-D-arabino-hexopyranosyl-(1-->4)-D-glucose (2II-deoxycellobiose). Kitaoka M; Nomura S; Yoshida M; Hayashi K Carbohydr Res; 2006 Mar; 341(4):545-9. PubMed ID: 16430877 [TBL] [Abstract][Full Text] [Related]
15. Dissecting the catalytic mechanism of a plant beta-D-glucan glucohydrolase through structural biology using inhibitors and substrate analogues. Hrmova M; Fincher GB Carbohydr Res; 2007 Sep; 342(12-13):1613-23. PubMed ID: 17548065 [TBL] [Abstract][Full Text] [Related]
16. Reaction mechanism of chitobiose phosphorylase from Vibrio proteolyticus: identification of family 36 glycosyltransferase in Vibrio. Honda Y; Kitaoka M; Hayashi K Biochem J; 2004 Jan; 377(Pt 1):225-32. PubMed ID: 13678418 [TBL] [Abstract][Full Text] [Related]
17. Characterization of a cellobiose phosphorylase from a hyperthermophilic eubacterium, Thermotoga maritima MSB8. Rajashekhara E; Kitaoka M; Kim YK; Hayashi K Biosci Biotechnol Biochem; 2002 Dec; 66(12):2578-86. PubMed ID: 12596851 [TBL] [Abstract][Full Text] [Related]
18. Aglycone specificity of Escherichia coli alpha-xylosidase investigated by transxylosylation. Kang MS; Okuyama M; Yaoi K; Mitsuishi Y; Kim YM; Mori H; Kim D; Kimura A FEBS J; 2007 Dec; 274(23):6074-84. PubMed ID: 17970751 [TBL] [Abstract][Full Text] [Related]
19. Enzymatic characteristics of cellobiose phosphorylase from Ruminococcus albus NE1 and kinetic mechanism of unusual substrate inhibition in reverse phosphorolysis. Hamura K; Saburi W; Abe S; Morimoto N; Taguchi H; Mori H; Matsui H Biosci Biotechnol Biochem; 2012; 76(4):812-8. PubMed ID: 22484959 [TBL] [Abstract][Full Text] [Related]
20. Modulation of acceptor specificity of Ruminococcus albus cellobiose phosphorylase through site-directed mutagenesis. Hamura K; Saburi W; Matsui H; Mori H Carbohydr Res; 2013 Sep; 379():21-5. PubMed ID: 23845516 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]