BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 11042618)

  • 1. Flow cytometry as a strategy to study the endosymbiosis of algae in Paramecium bursaria.
    Gerashchenko BI; Nishihara N; Ohara T; Tosuji H; Kosaka T; Hosoya H
    Cytometry; 2000 Nov; 41(3):209-15. PubMed ID: 11042618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow cytometric studies of the host-regulated cell cycle in algae symbiotic with green paramecium.
    Kadono T; Kawano T; Hosoya H; Kosaka T
    Protoplasma; 2004 Jun; 223(2-4):133-41. PubMed ID: 15221518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An experimental test of the symbiosis specificity between the ciliate Paramecium bursaria and strains of the unicellular green alga Chlorella.
    Summerer M; Sonntag B; Sommaruga R
    Environ Microbiol; 2007 Aug; 9(8):2117-22. PubMed ID: 17635555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell division and density of symbiotic Chlorella variabilis of the ciliate Paramecium bursaria is controlled by the host's nutritional conditions during early infection process.
    Kodama Y; Fujishima M
    Environ Microbiol; 2012 Oct; 14(10):2800-11. PubMed ID: 22672708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth kinetics of algal populations exsymbiotic from Paramecium bursaria by flow cytometry measurements.
    Gerashchenko BI; Kosaka T; Hosoya H
    Cytometry; 2001 Jul; 44(3):257-63. PubMed ID: 11429776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effect of symbiotic algae on the photoaccumulation capacity of cells of the ciliate Paramecium bursaria].
    Khromechek EB; Musonova MV; Barkhatov IuV
    Tsitologiia; 2002; 44(3):314-7. PubMed ID: 12094770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The metabolic interactions between Paramecium bursaria Ehrbg. and Chlorella spec. in the Paramecium bursaria-symbiosis. II. Symbiosis-specific properties of the physiology and the cytology of the symbiotic unit and their regulation (author's transl)].
    Reisser W
    Arch Microbiol; 1976 Dec; 111(1-2):161-70. PubMed ID: 1015958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Symbiotic Chlorella variabilis incubated under constant dark conditions for 24 hours loses the ability to avoid digestion by host lysosomal enzymes in digestive vacuoles of host ciliate Paramecium bursaria.
    Kodama Y; Fujishima M
    FEMS Microbiol Ecol; 2014 Dec; 90(3):946-55. PubMed ID: 25348325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Responses triggered in chloroplast of Chlorella variabilis NC64A by long-term association with Paramecium bursaria.
    Minaeva E; Ermilova E
    Protoplasma; 2017 Jul; 254(4):1769-1776. PubMed ID: 28074287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autolysis of Chlorella variabilis in Starving Paramecium bursaria Help the Host Cell Survive Against Starvation Stress.
    Kodama Y; Miyazaki S
    Curr Microbiol; 2021 Feb; 78(2):558-565. PubMed ID: 33389061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Secondary symbiosis between Paramecium and Chlorella cells.
    Kodama Y; Fujishima M
    Int Rev Cell Mol Biol; 2010; 279():33-77. PubMed ID: 20797676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of hypergravity on the Paramecium bursaria-Chlorella sp. symbiotic association.
    Bator T; Pado R
    Z Naturforsch C J Biosci; 2009; 64(9-10):743-6. PubMed ID: 19957445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endosymbiosis of Chlorella species to the ciliate Paramecium bursaria alters the distribution of the host's trichocysts beneath the host cell cortex.
    Kodama Y; Fujishima M
    Protoplasma; 2011 Apr; 248(2):325-37. PubMed ID: 20582727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The ciliate Paramecium bursaria allows budding of symbiotic Chlorella variabilis cells singly from the digestive vacuole membrane into the cytoplasm during algal reinfection.
    Kodama Y; Sumita H
    Protoplasma; 2022 Jan; 259(1):117-125. PubMed ID: 33881616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous Evaluation of Life Cycle Dynamics between a Host Paramecium and the Endosymbionts of Paramecium bursaria Using Capillary Flow Cytometry.
    Takahashi T
    Sci Rep; 2016 Aug; 6():31638. PubMed ID: 27531180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endosymbionts in paramecium.
    Fujishima M; Kodama Y
    Eur J Protistol; 2012 May; 48(2):124-37. PubMed ID: 22153895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The metabolic interactions between Paramecium bursaria Ehrbg. and Chlorella spec. in the Paramecium bursaria-symbiosis. I. The nitrogen and the carbon metabolism (author's transl)].
    Reisser W
    Arch Microbiol; 1976 Apr; 107(3):357-60. PubMed ID: 1275643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variation and asymmetry in host-symbiont dependence in a microbial symbiosis.
    Minter EJA; Lowe CD; Sørensen MES; Wood AJ; Cameron DD; Brockhurst MA
    BMC Evol Biol; 2018 Jul; 18(1):108. PubMed ID: 29986646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Infectivity of Chlorella species for the ciliate Paramecium bursaria is not based on sugar residues of their cell wall components, but on their ability to localize beneath the host cell membrane after escaping from the host digestive vacuole in the early infection process.
    Kodama Y; Fujishima M
    Protoplasma; 2007; 231(1-2):55-63. PubMed ID: 17602279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Green paramecia as an evolutionary winner of oxidative symbiosis: a hypothesis and supportive data.
    Kawano T; Kadono T; Kosaka T; Hosoya H
    Z Naturforsch C J Biosci; 2004; 59(7-8):538-42. PubMed ID: 15813376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.