These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 1104358)

  • 1. The energy-coupling controlled efflux of 2-keto-3-deoxy-D-gluconate in Escherichia coli K 12.
    Lagarde AE; Stoeber FR
    Eur J Biochem; 1975 Jul; 55(2):343-54. PubMed ID: 1104358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Escherichia coli K-12 structural kdgT mutants exhibiting thermosensitive 2-keto-3-deoxy-D-gluconate uptake.
    Lagarde AE; Stoeber FR
    J Bacteriol; 1977 Feb; 129(2):606-15. PubMed ID: 320187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Accumulation of D glucuronate by the transport system of 2-keto-3-deoxy-D-gluconate in Escherichia coli K 12].
    Lagarde A; Pouysségur J; Stoeber F
    C R Acad Hebd Seances Acad Sci D; 1972 Oct; 275(16):1831-4. PubMed ID: 4629582
    [No Abstract]   [Full Text] [Related]  

  • 4. Proton uptake linked to the 3-deoxy-2-oxo-d-gluconate-transport system of Escherichia coli.
    Lagarde AE; Haddock BA
    Biochem J; 1977 Jan; 162(1):183-7. PubMed ID: 15555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for an electrogenic 3-deoxy-2-oxo-D-gluconate--proton co-transport driven by the protonmotive force in Escherichia coli K12.
    Lagarde A
    Biochem J; 1977 Nov; 168(2):211-21. PubMed ID: 23116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport of 2-keto-3-deoxy-D-gluconate in isolated membrane vesicles of Escherichia coli K12.
    Lagarde AE; Stoeber FR
    Eur J Biochem; 1974 Mar; 43(1):197-208. PubMed ID: 4601151
    [No Abstract]   [Full Text] [Related]  

  • 7. Altered transport properties in Escherichia coli mutants selected for pH-conditional growth on 3-deoxy-2-oxo-D-gluconate.
    Mandrand-Berthelot MA; Lagarde AE
    J Biol Chem; 1982 Aug; 257(15):8806-16. PubMed ID: 6284745
    [No Abstract]   [Full Text] [Related]  

  • 8. A transport system for 2-keto-3-deoxy-D-gluconate uptake in Escherichia coli K12. Biochemical and physiological studies in whole cells.
    Lagarde AE; Pouysségur JM; Stoeber FR
    Eur J Biochem; 1973 Jul; 36(2):328-41. PubMed ID: 4581272
    [No Abstract]   [Full Text] [Related]  

  • 9. Utilization of gluconate by Escherichia coli. Uptake of D-gluconate by a mutant impaired in gluconate kinase activity and by membrane vesicles derived therefrom.
    Pouysségur JM; Faik P; Kornberg HL
    Biochem J; 1974 May; 140(2):193-203. PubMed ID: 4375960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic control of the 2-keto-3-deoxy-d-gluconate metabolism in Escherichia coli K-12: kdg regulon.
    Pouyssegur J; Stoeber F
    J Bacteriol; 1974 Feb; 117(2):641-51. PubMed ID: 4359651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathways for chloride and sodium transport across toad skin.
    Bruus K; Kristensen P; Larsen EH
    Acta Physiol Scand; 1976 Mar; 97(1):31-47. PubMed ID: 1274636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The characterization of energized and partially de-energized (respiration-independent) beta-galactoside transport into Escherichia coli.
    Lancaster JR; Hill RJ; Struve WG
    Biochim Biophys Acta; 1975 Aug; 401(2):285-98. PubMed ID: 1098694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial synthesis of 3-deoxy-D-erythro-hex-2-ulosonic acid 6-phosphate.
    Knappmann BR; el-Nawawy MA; Schlegel HG; Kula MR
    Carbohydr Res; 1993 Apr; 242():153-60. PubMed ID: 8495435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of 2-keto-3-deoxy-d-Gluconate Kinase and 2-keto-3-deoxy-d-Phosphogluconate Aldolase in an Alginate-Assimilating Bacterium, Flavobacterium sp. Strain UMI-01.
    Nishiyama R; Inoue A; Ojima T
    Mar Drugs; 2017 Feb; 15(2):. PubMed ID: 28216576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [2-Keto-3-deoxy-gluconate transport system in E. coli K 12: map location of a structural gene and of its operator].
    Pouysségur J; Lagarde A
    Mol Gen Genet; 1973 Mar; 121(2):163-80. PubMed ID: 4571523
    [No Abstract]   [Full Text] [Related]  

  • 16. Ouabain-insensitive sodium movements in the human red blood cell.
    Sachs JR
    J Gen Physiol; 1971 Mar; 57(3):259-82. PubMed ID: 5544793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assymetry of the myo-inositol transport system in Klebsiella aerogenes. Energy is necessary to create the assymetry of the transport system.
    Deshusses J; Reber G
    Eur J Biochem; 1977 Jan; 72(1):101-6. PubMed ID: 318995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The active transport of 2-keto-D-gluconate in vesicles prepared from Pseudomonas purida.
    Agbanyo F; Taylor NF
    Biochem J; 1985 May; 228(1):257-62. PubMed ID: 4004814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of transport inhibitors on sodium outflux and influx in red blood cells: evidence for exchange diffusion.
    Dunn MJ
    J Clin Invest; 1970 Oct; 49(10):1804-14. PubMed ID: 4990072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. D-Gluconate transport in Arthrobacter pyridinolis. Metabolic trapping of a protonated solute.
    Mandel KG; Krulwich TA
    Biochim Biophys Acta; 1979 Apr; 552(3):478-91. PubMed ID: 36144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.