These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 11043877)
21. Reduced cortical brain activity with the use of microprocessor-controlled prosthetic knees during walking. Möller S; Rusaw D; Hagberg K; Ramstrand N Prosthet Orthot Int; 2019 Jun; 43(3):257-265. PubMed ID: 30375285 [TBL] [Abstract][Full Text] [Related]
22. Functional assessment and satisfaction of transfemoral amputees with low mobility (FASTK2): A clinical trial of microprocessor-controlled vs. non-microprocessor-controlled knees. Kaufman KR; Bernhardt KA; Symms K Clin Biomech (Bristol); 2018 Oct; 58():116-122. PubMed ID: 30077128 [TBL] [Abstract][Full Text] [Related]
23. A clinical comparison of variable-damping and mechanically passive prosthetic knee devices. Johansson JL; Sherrill DM; Riley PO; Bonato P; Herr H Am J Phys Med Rehabil; 2005 Aug; 84(8):563-75. PubMed ID: 16034225 [TBL] [Abstract][Full Text] [Related]
24. Effect of an Intelligent Prosthesis (IP) on the walking ability of young transfemoral amputees: comparison of IP users with able-bodied people. Chin T; Sawamura S; Shiba R; Oyabu H; Nagakura Y; Takase I; Machida K; Nakagawa A Am J Phys Med Rehabil; 2003 Jun; 82(6):447-51. PubMed ID: 12820787 [TBL] [Abstract][Full Text] [Related]
25. Physiological parameters analysis of transfemoral amputees with different prosthetic knees. Li S; Cao W; Yu H; Meng Q; Chen W Acta Bioeng Biomech; 2019; 21(3):135-142. PubMed ID: 31798017 [TBL] [Abstract][Full Text] [Related]
26. Energy cost of walking: comparison of "intelligent prosthesis" with conventional mechanism. Buckley JG; Spence WD; Solomonidis SE Arch Phys Med Rehabil; 1997 Mar; 78(3):330-3. PubMed ID: 9084360 [TBL] [Abstract][Full Text] [Related]
27. Energy expenditure during walking in amputees after disarticulation of the hip. A microprocessor-controlled swing-phase control knee versus a mechanical-controlled stance-phase control knee. Chin T; Sawamura S; Shiba R; Oyabu H; Nagakura Y; Nakagawa A J Bone Joint Surg Br; 2005 Jan; 87(1):117-9. PubMed ID: 15686251 [TBL] [Abstract][Full Text] [Related]
28. Gait Analysis of Knee Joint Walking Based on Image Processing. Wang S; Zhou J Curr Med Imaging; 2024; 20():e15734056277482. PubMed ID: 38616747 [TBL] [Abstract][Full Text] [Related]
29. Energy expenditure of transfemoral amputees walking on a horizontal and tilted treadmill simulating different outdoor walking conditions. Starholm IM; Gjovaag T; Mengshoel AM Prosthet Orthot Int; 2010 Jun; 34(2):184-94. PubMed ID: 20141493 [TBL] [Abstract][Full Text] [Related]
30. A comparative study of conventional and energy-storing prosthetic feet in high-functioning transfemoral amputees. Graham LE; Datta D; Heller B; Howitt J; Pros D Arch Phys Med Rehabil; 2007 Jun; 88(6):801-6. PubMed ID: 17532907 [TBL] [Abstract][Full Text] [Related]
31. Temporal-spatial parameters of gait in transfemoral amputees: Comparison of bionic and mechanically passive knee joints. Uchytil J; Jandacka D; Zahradnik D; Farana R; Janura M Prosthet Orthot Int; 2014 Jun; 38(3):199-203. PubMed ID: 23824546 [TBL] [Abstract][Full Text] [Related]
32. A comparative study of oxygen consumption for conventional and energy-storing prosthetic feet in transfemoral amputees. Graham LE; Datta D; Heller B; Howitt J Clin Rehabil; 2008; 22(10-11):896-901. PubMed ID: 18955421 [TBL] [Abstract][Full Text] [Related]
33. Lower-leg inertial properties in transtibial amputees and control subjects and their influence on the swing phase during gait. Selles RW; Korteland S; Van Soest AJ; Bussmann JB; Stam HJ Arch Phys Med Rehabil; 2003 Apr; 84(4):569-77. PubMed ID: 12690597 [TBL] [Abstract][Full Text] [Related]
34. Successful prosthetic fitting of elderly trans-femoral amputees with Intelligent Prosthesis (IP): a clinical pilot study. Chin T; Maeda Y; Sawamura S; Oyabu H; Nagakura Y; Takase I; Machida K Prosthet Orthot Int; 2007 Sep; 31(3):271-6. PubMed ID: 17979012 [TBL] [Abstract][Full Text] [Related]
35. Uphill and downhill walking in unilateral lower limb amputees. Vrieling AH; van Keeken HG; Schoppen T; Otten E; Halbertsma JP; Hof AL; Postema K Gait Posture; 2008 Aug; 28(2):235-42. PubMed ID: 18242995 [TBL] [Abstract][Full Text] [Related]
36. Functional added value of microprocessor-controlled knee joints in daily life performance of Medicare Functional Classification Level-2 amputees. Theeven P; Hemmen B; Rings F; Meys G; Brink P; Smeets R; Seelen H J Rehabil Med; 2011 Oct; 43(10):906-15. PubMed ID: 21947182 [TBL] [Abstract][Full Text] [Related]
37. Energy expenditure and gait characteristics of a bilateral amputee walking with C-leg prostheses compared with stubby and conventional articulating prostheses. Perry J; Burnfield JM; Newsam CJ; Conley P Arch Phys Med Rehabil; 2004 Oct; 85(10):1711-7. PubMed ID: 15468036 [TBL] [Abstract][Full Text] [Related]
38. Gait efficiency using the C-Leg. Orendurff MS; Segal AD; Klute GK; McDowell ML; Pecoraro JA; Czerniecki JM J Rehabil Res Dev; 2006; 43(2):239-46. PubMed ID: 16847790 [TBL] [Abstract][Full Text] [Related]
39. Comparison of different microprocessor controlled knee joints on the energy consumption during walking in trans-femoral amputees: intelligent knee prosthesis (IP) versus C-leg. Chin T; Machida K; Sawamura S; Shiba R; Oyabu H; Nagakura Y; Takase I; Nakagawa A Prosthet Orthot Int; 2006 Apr; 30(1):73-80. PubMed ID: 16739783 [TBL] [Abstract][Full Text] [Related]
40. Evaluation of gait outcomes for individuals with established unilateral transfemoral amputation following the provision of microprocessor controlled knees in the context of a clinical service. Carse B; Scott H; Brady L; Colvin J Prosthet Orthot Int; 2021 Jun; 45(3):254-261. PubMed ID: 34016870 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]