These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 11044662)
1. Lipophorin as a yolk protein precursor in the mosquito, Aedes aegypti. Sun J; Hiraoka T; Dittmer NT; Cho KH; Raikhel AS Insect Biochem Mol Biol; 2000 Dec; 30(12):1161-71. PubMed ID: 11044662 [TBL] [Abstract][Full Text] [Related]
2. Secretory and internalization pathways of mosquito yolk protein precursors. Snigirevskaya ES; Hays AR; Raikhel AS Cell Tissue Res; 1997 Oct; 290(1):129-42. PubMed ID: 9377633 [TBL] [Abstract][Full Text] [Related]
3. Biosynthesis of Aedes aegypti lipophorin and gene expression of its apolipoproteins. van Heusden MC; Thompson F; Dennis J Insect Biochem Mol Biol; 1998 Oct; 28(10):733-8. PubMed ID: 9807220 [TBL] [Abstract][Full Text] [Related]
4. Molecular characterization of the VLDL receptor homolog mediating binding of lipophorin in oocyte of the mosquito Aedes aegypti. Cheon HM; Seo SJ; Sun J; Sappington TW; Raikhel AS Insect Biochem Mol Biol; 2001 Jun; 31(8):753-60. PubMed ID: 11378410 [TBL] [Abstract][Full Text] [Related]
5. Expression of the early-late gene encoding the nuclear receptor HR3 suggests its involvement in regulating the vitellogenic response to ecdysone in the adult mosquito. Kapitskaya MZ; Li C; Miura K; Segraves W; Raikhel AS Mol Cell Endocrinol; 2000 Feb; 160(1-2):25-37. PubMed ID: 10715536 [TBL] [Abstract][Full Text] [Related]
6. CREB isoform represses yolk protein gene expression in the mosquito fat body. Dittmer NT; Sun G; Wang SF; Raikhel AS Mol Cell Endocrinol; 2003 Nov; 210(1-2):39-49. PubMed ID: 14615059 [TBL] [Abstract][Full Text] [Related]
7. Identification of two cationic amino acid transporters required for nutritional signaling during mosquito reproduction. Attardo GM; Hansen IA; Shiao SH; Raikhel AS J Exp Biol; 2006 Aug; 209(Pt 16):3071-8. PubMed ID: 16888056 [TBL] [Abstract][Full Text] [Related]
8. A critical role of the nuclear receptor HR3 in regulation of gonadotrophic cycles of the mosquito Aedes aegypti. Mane-Padros D; Cruz J; Cheng A; Raikhel AS PLoS One; 2012; 7(9):e45019. PubMed ID: 23049766 [TBL] [Abstract][Full Text] [Related]
9. Lipid transfer from insect fat body to lipophorin: comparison between a mosquito triacylglycerol-rich lipophorin and a sphinx moth diacylglycerol-rich lipophorin. Pennington JE; Nussenzveig RH; Van Heusden MC J Lipid Res; 1996 May; 37(5):1144-52. PubMed ID: 8725165 [TBL] [Abstract][Full Text] [Related]
10. Programmed autophagy in the fat body of Aedes aegypti is required to maintain egg maturation cycles. Bryant B; Raikhel AS PLoS One; 2011; 6(11):e25502. PubMed ID: 22125592 [TBL] [Abstract][Full Text] [Related]
11. Aedes aegypti lipophorin. Capurro Mde L; de Bianchi AG; Marinotti O Comp Biochem Physiol Biochem Mol Biol; 1994 May; 108(1):35-9. PubMed ID: 11570397 [TBL] [Abstract][Full Text] [Related]
12. Indirect control of yolk protein genes by 20-hydroxyecdysone in the fat body of the mosquito, Aedes aegypti. Deitsch KW; Chen JS; Raikhel AS Insect Biochem Mol Biol; 1995 Apr; 25(4):449-54. PubMed ID: 7742832 [TBL] [Abstract][Full Text] [Related]
13. Structure and expression of the lipophorin-encoding gene of the malaria vector, Anopheles gambiae. Marinotti O; Capurro Mde L; Nirmala X; Calvo E; James AA Comp Biochem Physiol B Biochem Mol Biol; 2006 May; 144(1):101-9. PubMed ID: 16524752 [TBL] [Abstract][Full Text] [Related]
14. A novel function of 20-hydroxyecdysone: translational repression of the lysosomal protease mRNA in the mosquito fat body. Cho WL; Raikhel AS Insect Biochem Mol Biol; 2001 Mar; 31(4-5):283-8. PubMed ID: 11222937 [TBL] [Abstract][Full Text] [Related]
15. Regulation of lipid metabolism genes, lipid carrier protein lipophorin, and its receptor during immune challenge in the mosquito Aedes aegypti. Cheon HM; Shin SW; Bian G; Park JH; Raikhel AS J Biol Chem; 2006 Mar; 281(13):8426-35. PubMed ID: 16449228 [TBL] [Abstract][Full Text] [Related]
16. Juvenile hormone mediates lipid storage in the oocytes of Dipetalogaster maxima. Ramos FO; Leyria J; Nouzova M; Fruttero LL; Noriega FG; Canavoso LE Insect Biochem Mol Biol; 2021 Jun; 133():103499. PubMed ID: 33212190 [TBL] [Abstract][Full Text] [Related]
17. Ovarian nutritional resources during the reproductive cycle of the hematophagous Dipetalogaster maxima (Hemiptera: Reduviidae): focus on lipid metabolism. Leyria J; Fruttero LL; Aguirre SA; Canavoso LE Arch Insect Biochem Physiol; 2014 Nov; 87(3):148-63. PubMed ID: 25052220 [TBL] [Abstract][Full Text] [Related]
18. microRNA miR-275 is indispensable for blood digestion and egg development in the mosquito Aedes aegypti. Bryant B; Macdonald W; Raikhel AS Proc Natl Acad Sci U S A; 2010 Dec; 107(52):22391-8. PubMed ID: 21115818 [TBL] [Abstract][Full Text] [Related]
19. Lipophorin levels in the yellow fever mosquito, Aedes aegypti, and the effect of feeding. Van Heusden MC; Erickson BA; Pennington JE Arch Insect Biochem Physiol; 1997; 34(3):301-12. PubMed ID: 9055439 [TBL] [Abstract][Full Text] [Related]
20. Two isoforms of the early E74 gene, an Ets transcription factor homologue, are implicated in the ecdysteroid hierarchy governing vitellogenesis of the mosquito, Aedes aegypti. Sun G; Zhu J; Li C; Tu Z; Raikhel AS Mol Cell Endocrinol; 2002 Apr; 190(1-2):147-57. PubMed ID: 11997188 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]