BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 11044665)

  • 1. Chitin is only a minor component of the peritrophic matrix from larvae of Lucilia cuprina.
    Tellam RL; Eisemann C
    Insect Biochem Mol Biol; 2000 Dec; 30(12):1189-201. PubMed ID: 11044665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of a major peritrophic membrane protein, peritrophin-44, from the larvae of Lucilia cuprina. cDNA and deduced amino acid sequences.
    Elvin CM; Vuocolo T; Pearson RD; East IJ; Riding GA; Eisemann CH; Tellam RL
    J Biol Chem; 1996 Apr; 271(15):8925-35. PubMed ID: 8621536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. cDNA and deduced amino acid sequences of a peritrophic membrane glycoprotein, 'peritrophin-48', from the larvae of Lucilia cuprina.
    Schorderet S; Pearson RD; Vuocolo T; Eisemann C; Riding GA; Tellam RL
    Insect Biochem Mol Biol; 1998 Feb; 28(2):99-111. PubMed ID: 9639876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chitin is a necessary component to maintain the barrier function of the peritrophic matrix in the insect midgut.
    Kelkenberg M; Odman-Naresh J; Muthukrishnan S; Merzendorfer H
    Insect Biochem Mol Biol; 2015 Jan; 56():21-8. PubMed ID: 25449129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel family of chitin-binding proteins from insect type 2 peritrophic matrix. cDNA sequences, chitin binding activity, and cellular localization.
    Wijffels G; Eisemann C; Riding G; Pearson R; Jones A; Willadsen P; Tellam R
    J Biol Chem; 2001 May; 276(18):15527-36. PubMed ID: 11278497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcofluor disrupts the midgut defense system in insects.
    Wang P; Granados RR
    Insect Biochem Mol Biol; 2000 Feb; 30(2):135-43. PubMed ID: 10696589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Secretion of the type 2 peritrophic matrix protein, peritrophin-15, from the cardia.
    Eisemann C; Wijffels G; Tellam RL
    Arch Insect Biochem Physiol; 2001 Jun; 47(2):76-85. PubMed ID: 11376454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial and temporal synthesis of Mamestra configurata peritrophic matrix through a larval stadium.
    Toprak U; Hegedus DD; Baldwin D; Coutu C; Erlandson M
    Insect Biochem Mol Biol; 2014 Nov; 54():89-97. PubMed ID: 25240619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A gut-specific chitinase gene essential for regulation of chitin content of peritrophic matrix and growth of Ostrinia nubilalis larvae.
    Khajuria C; Buschman LL; Chen MS; Muthukrishnan S; Zhu KY
    Insect Biochem Mol Biol; 2010 Aug; 40(8):621-9. PubMed ID: 20542114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The intrinsic peritrophic matrix protein peritrophin-95 from larvae of Lucilia cuprina is synthesised in the cardia and regurgitated or excreted as a highly immunogenic protein.
    Tellam RL; Eisemann C; Casu R; Pearson R
    Insect Biochem Mol Biol; 2000 Jan; 30(1):9-17. PubMed ID: 10646966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integumental chitin synthase activity in cell-free extracts of larvae of the Australian sheep blowfly, Lucilia cuprina, and two other species of diptera.
    Turnbull IF; Howells AJ
    Aust J Biol Sci; 1983; 36(3):251-62. PubMed ID: 6228213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Honey bee larval peritrophic matrix degradation during infection with Paenibacillus larvae, the aetiological agent of American foulbrood of honey bees, is a key step in pathogenesis.
    Garcia-Gonzalez E; Genersch E
    Environ Microbiol; 2013 Nov; 15(11):2894-901. PubMed ID: 23809335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional redundancy of structural proteins of the peritrophic membrane in Trichoplusia ni.
    Wang S; Wang P
    Insect Biochem Mol Biol; 2020 Oct; 125():103456. PubMed ID: 32814147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNAi-mediated CHS-2 silencing affects the synthesis of chitin and the formation of the peritrophic membrane in the midgut of Aedes albopictus larvae.
    Zhang C; Ding Y; Zhou M; Tang Y; Chen R; Chen Y; Wen Y; Wang S
    Parasit Vectors; 2023 Aug; 16(1):259. PubMed ID: 37533099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro and in vivo application of RNA interference for targeting genes involved in peritrophic matrix synthesis in a lepidopteran system.
    Toprak U; Baldwin D; Erlandson M; Gillott C; Harris S; Hegedus DD
    Insect Sci; 2013 Feb; 20(1):92-100. PubMed ID: 23955829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chitinolytic activities in the gut of Aedes aegypti (Diptera:Culicidae) larvae and their role in digestion of chitin-rich structures.
    Souza-Neto JA; Gusmão DS; Lemos FJ
    Comp Biochem Physiol A Mol Integr Physiol; 2003 Nov; 136(3):717-24. PubMed ID: 14613799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of group IV chitinase, HaCHT4, on the chitin content of the peritrophic matrix (PM) during larval growth and development of Helicoverpa armigera.
    Hu DQ; Luo SH; Abudunasier M; Cai XH; Feng MM; Liu XN; Wang DM
    Pest Manag Sci; 2022 May; 78(5):1815-1823. PubMed ID: 35043538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases.
    Merzendorfer H; Zimoch L
    J Exp Biol; 2003 Dec; 206(Pt 24):4393-412. PubMed ID: 14610026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of an immuno-protective mucin-like protein, peritrophin-55, from the peritrophic matrix of Lucilia cuprina larvae.
    Tellam RL; Vuocolo T; Eisemann C; Briscoe S; Riding G; Elvin C; Pearson R
    Insect Biochem Mol Biol; 2003 Feb; 33(2):239-52. PubMed ID: 12535682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A
    Qin J; Tong Z; Zhan Y; Buisson C; Song F; He K; Nielsen-LeRoux C; Guo S
    Toxins (Basel); 2020 Apr; 12(4):. PubMed ID: 32294913
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.