These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 11045009)

  • 1. Fluorescent labeling of recombinant proteins in living cells with FlAsH.
    Griffin BA; Adams SR; Jones J; Tsien RY
    Methods Enzymol; 2000; 327():565-78. PubMed ID: 11045009
    [No Abstract]   [Full Text] [Related]  

  • 2. Readily Available Fluorescent Probe for Carbon Monoxide Imaging in Living Cells.
    Feng W; Liu D; Feng S; Feng G
    Anal Chem; 2016 Nov; 88(21):10648-10653. PubMed ID: 27728973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific covalent labeling of recombinant protein molecules inside live cells.
    Griffin BA; Adams SR; Tsien RY
    Science; 1998 Jul; 281(5374):269-72. PubMed ID: 9657724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The protein-labeling reagent FLASH-EDT2 binds not only to CCXXCC motifs but also non-specifically to endogenous cysteine-rich proteins.
    Stroffekova K; Proenza C; Beam KG
    Pflugers Arch; 2001 Sep; 442(6):859-66. PubMed ID: 11680618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The biarsenical dye Lumio exhibits a reduced ability to specifically detect tetracysteine-containing proteins within live cells.
    Hearps AC; Pryor MJ; Kuusisto HV; Rawlinson SM; Piller SC; Jans DA
    J Fluoresc; 2007 Nov; 17(6):593-7. PubMed ID: 17805945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual color detection of cyan and yellow derivatives of green fluorescent protein using conventional fluorescence microscopy and 35-mm photography.
    Green G; Kain SR; Angres B
    Methods Enzymol; 2000; 327():89-94. PubMed ID: 11044976
    [No Abstract]   [Full Text] [Related]  

  • 7. Flash labeling of a nuclear receptor domain (D domain of ultraspiracle) fused to tetracysteine tag.
    Szécsi M; Spindler-Barth M
    Acta Biol Hung; 2006 Jun; 57(2):181-90. PubMed ID: 16841469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studying organelle physiology with fusion protein-targeted avidin and fluorescent biotin conjugates.
    Wu MM; Llopis J; Adams SR; McCaffery JM; Teter K; Kulomaa MS; Machen TE; Moore HP; Tsien RY
    Methods Enzymol; 2000; 327():546-64. PubMed ID: 11045008
    [No Abstract]   [Full Text] [Related]  

  • 9. Use of fusions to green fluorescent protein in the detection of apoptosis.
    Shinbrot E; Spencer C; Natale V; Kain SR
    Methods Enzymol; 2000; 327():513-22. PubMed ID: 11045006
    [No Abstract]   [Full Text] [Related]  

  • 10. New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications.
    Adams SR; Campbell RE; Gross LA; Martin BR; Walkup GK; Yao Y; Llopis J; Tsien RY
    J Am Chem Soc; 2002 May; 124(21):6063-76. PubMed ID: 12022841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Green fluorescent protein-based sensors for detecting signal transduction and monitoring ion channel function.
    Siegel MS; Isacoff EY
    Methods Enzymol; 2000; 327():249-59. PubMed ID: 11044988
    [No Abstract]   [Full Text] [Related]  

  • 12. A photocaged fluorescent probe for imaging hypochlorous acid in lysosomes.
    Ren M; Li Z; Nie J; Wang L; Lin W
    Chem Commun (Camb); 2018 Aug; 54(66):9238-9241. PubMed ID: 30066708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies of signal transduction events using chimeras to green fluorescent protein.
    Meyer T; Oancea E
    Methods Enzymol; 2000; 327():500-13. PubMed ID: 11045005
    [No Abstract]   [Full Text] [Related]  

  • 14. Fluorescence imaging of amyloid formation in living cells by a functional, tetracysteine-tagged alpha-synuclein.
    Roberti MJ; Bertoncini CW; Klement R; Jares-Erijman EA; Jovin TM
    Nat Methods; 2007 Apr; 4(4):345-51. PubMed ID: 17351621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directing proteins to nucleus by fusion to nuclear localization signal tags.
    Krebber H; Silver PA
    Methods Enzymol; 2000; 327():283-96. PubMed ID: 11044991
    [No Abstract]   [Full Text] [Related]  

  • 16. Site-specific covalent labeling of proteins inside live cells using small molecule probes.
    Chattopadhaya S; Srinivasan R; Yeo DS; Chen GY; Yao SQ
    Bioorg Med Chem; 2009 Feb; 17(3):981-9. PubMed ID: 18261914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Versatile On-Demand Fluorescent Labeling of Fusion Proteins Using Fluorescence-Activating and Absorption-Shifting Tag (FAST).
    Gautier A; Jullien L; Li C; Plamont MA; Tebo AG; Thauvin M; Volovitch M; Vriz S
    Methods Mol Biol; 2021; 2350():253-265. PubMed ID: 34331290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FlAsH-based live-cell fluorescent imaging of synthetic peptides expressed in Arabidopsis and tobacco.
    Estévez JM; Somerville C
    Biotechniques; 2006 Nov; 41(5):569-70, 572-4. PubMed ID: 17140113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quenched substrates for live-cell labeling of SNAP-tagged fusion proteins with improved fluorescent background.
    Stöhr K; Siegberg D; Ehrhard T; Lymperopoulos K; Öz S; Schulmeister S; Pfeifer AC; Bachmann J; Klingmüller U; Sourjik V; Herten DP
    Anal Chem; 2010 Oct; 82(19):8186-93. PubMed ID: 20815338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel method of affinity-purifying proteins using a bis-arsenical fluorescein.
    Thorn KS; Naber N; Matuska M; Vale RD; Cooke R
    Protein Sci; 2000 Feb; 9(2):213-7. PubMed ID: 10716173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.