These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 11045364)

  • 21. Octopus cells of the mammalian ventral cochlear nucleus sense the rate of depolarization.
    Ferragamo MJ; Oertel D
    J Neurophysiol; 2002 May; 87(5):2262-70. PubMed ID: 11976365
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Membrane and firing properties of avian medial vestibular nucleus neurons in vitro.
    du Lac S; Lisberger SG
    J Comp Physiol A; 1995 May; 176(5):641-51. PubMed ID: 7769566
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The ionic mechanism of gamma resonance in rat striatal fast-spiking neurons.
    Sciamanna G; Wilson CJ
    J Neurophysiol; 2011 Dec; 106(6):2936-49. PubMed ID: 21880937
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Repetitive firing properties in subpopulations of the chick Edinger Westphal nucleus.
    Fujii JT
    J Comp Neurol; 1992 Feb; 316(3):279-86. PubMed ID: 1577987
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intrinsic firing dynamics of vestibular nucleus neurons.
    Sekirnjak C; du Lac S
    J Neurosci; 2002 Mar; 22(6):2083-95. PubMed ID: 11896148
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spontaneous synaptic activity is primarily GABAergic in vestibular nucleus neurons of the chick embryo.
    Shao M; Hirsch JC; Giaume C; Peusner KD
    J Neurophysiol; 2003 Aug; 90(2):1182-92. PubMed ID: 12904504
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dye coupling in developing vestibular nuclei.
    Shao M; Gottesman-Davis A; Popratiloff A; Peusner KD
    J Neurosci Res; 2008 Mar; 86(4):832-44. PubMed ID: 17941057
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Block of voltage-gated potassium channels by Pacific ciguatoxin-1 contributes to increased neuronal excitability in rat sensory neurons.
    Birinyi-Strachan LC; Gunning SJ; Lewis RJ; Nicholson GM
    Toxicol Appl Pharmacol; 2005 Apr; 204(2):175-86. PubMed ID: 15808523
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Contribution of the Kv3.1 potassium channel to high-frequency firing in mouse auditory neurones.
    Wang LY; Gan L; Forsythe ID; Kaczmarek LK
    J Physiol; 1998 May; 509 ( Pt 1)(Pt 1):183-94. PubMed ID: 9547392
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Voltage-sensitive conductances of bushy cells of the Mammalian ventral cochlear nucleus.
    Cao XJ; Shatadal S; Oertel D
    J Neurophysiol; 2007 Jun; 97(6):3961-75. PubMed ID: 17428908
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Postnatal development of temporal integration, spike timing and spike threshold regulation by a dendrotoxin-sensitive K⁺ current in rat CA1 hippocampal cells.
    Giglio AM; Storm JF
    Eur J Neurosci; 2014 Jan; 39(1):12-23. PubMed ID: 24148023
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ontogeny of electrophysiological properties and dendritic pattern in second-order chick vestibular neurons.
    Peusner KD; Giaume C
    J Comp Neurol; 1997 Aug; 384(4):621-33. PubMed ID: 9259493
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel role for MNTB neuron dendrites in regulating action potential amplitude and cell excitability during repetitive firing.
    Leão RN; Leão RM; da Costa LF; Rock Levinson S; Walmsley B
    Eur J Neurosci; 2008 Jun; 27(12):3095-108. PubMed ID: 18598256
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Emergence of action potential generation and synaptic transmission in vestibular nucleus neurons.
    Shao M; Hirsch JC; Peusner KD
    J Neurophysiol; 2006 Sep; 96(3):1215-26. PubMed ID: 16775212
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cellular processing of temporal information in medial vestibular nucleus neurons.
    du Lac S; Lisberger SG
    J Neurosci; 1995 Dec; 15(12):8000-10. PubMed ID: 8613737
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Firing frequency and entrainment maintained in primary auditory neurons in the presence of combined BDNF and NT3.
    Wright T; Gillespie LN; O'Leary SJ; Needham K
    Sci Rep; 2016 Jun; 6():28584. PubMed ID: 27335179
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Orexin-induced modulation of state-dependent intrinsic properties in thalamic paraventricular nucleus neurons attenuates action potential patterning and frequency.
    Kolaj M; Doroshenko P; Yan Cao X; Coderre E; Renaud LP
    Neuroscience; 2007 Jul; 147(4):1066-75. PubMed ID: 17600629
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Edinger-Westphal nucleus of the juvenile rat contains transient- and repetitive-firing neurons.
    Laursen M; Rekling JC
    Neuroscience; 2006 Aug; 141(1):191-200. PubMed ID: 16677766
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrophysiological study of the tangential vestibular nucleus of the chick embryo "in vitro".
    Peusner KD; Giaume C
    Exp Brain Res; 1989; 74(1):80-8. PubMed ID: 2538341
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activation and deactivation of voltage-dependent K+ channels during synaptically driven action potentials in the MNTB.
    Klug A; Trussell LO
    J Neurophysiol; 2006 Sep; 96(3):1547-55. PubMed ID: 16775198
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.