These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 11045810)

  • 1. Fast determination of 13C NMR chemical shifts using artificial neural networks.
    Meiler J; Meusinger R; Will M
    J Chem Inf Comput Sci; 2000; 40(5):1169-76. PubMed ID: 11045810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genius: a genetic algorithm for automated structure elucidation from 13C NMR spectra.
    Meiler J; Will M
    J Am Chem Soc; 2002 Mar; 124(9):1868-70. PubMed ID: 11866596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance validation of neural network based (13)c NMR prediction using a publicly available data source.
    Blinov KA; Smurnyy YD; Elyashberg ME; Churanova TS; Kvasha M; Steinbeck C; Lefebvre BA; Williams AJ
    J Chem Inf Model; 2008 Mar; 48(3):550-5. PubMed ID: 18293952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational studies of 13C NMR chemical shifts of saccharides.
    Taubert S; Konschin H; Sundholm D
    Phys Chem Chem Phys; 2005 Jul; 7(13):2561-9. PubMed ID: 16189565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-based predictions of 1H NMR chemical shifts using feed-forward neural networks.
    Binev Y; Aires-de-Sousa J
    J Chem Inf Comput Sci; 2004; 44(3):940-5. PubMed ID: 15154760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of 13C nuclear magnetic resonance spectra of lignin compounds using principal component analysis and artificial neural networks.
    Jalali-Heravi M; Masoum S; Shahbazikhah P
    J Magn Reson; 2004 Nov; 171(1):176-85. PubMed ID: 15504698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An NMR method for the determination of protein binding interfaces using TEMPOL-induced chemical shift perturbations.
    Moriya J; Sakakura M; Tokunaga Y; Prosser RS; Shimada I
    Biochim Biophys Acta; 2009 Oct; 1790(10):1368-76. PubMed ID: 19520148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated structure elucidation of organic molecules from (13)c NMR spectra using genetic algorithms and neural networks.
    Meiler J; Will M
    J Chem Inf Comput Sci; 2001; 41(6):1535-46. PubMed ID: 11749580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of available experimental data on the prediction of 1H NMR chemical shifts by neural networks.
    Binev Y; Corvo M; Aires-de-Sousa J
    J Chem Inf Comput Sci; 2004; 44(3):946-9. PubMed ID: 15154761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of the 13C nuclear magnetic resonance spectra of trisaccharides using multiple linear regression analysis and neural networks.
    Clouser DL; Jurs PC
    Carbohydr Res; 1995 Jul; 271(1):65-77. PubMed ID: 7648583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel methods of automated structure elucidation based on 13C NMR spectroscopy.
    Meiler J; Köck M
    Magn Reson Chem; 2004 Dec; 42(12):1042-5. PubMed ID: 15470690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PROSHIFT: protein chemical shift prediction using artificial neural networks.
    Meiler J
    J Biomol NMR; 2003 May; 26(1):25-37. PubMed ID: 12766400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A solid state 13C NMR, crystallographic, and quantum chemical investigation of chemical shifts and hydrogen bonding in histidine dipeptides.
    Cheng F; Sun H; Zhang Y; Mukkamala D; Oldfield E
    J Am Chem Soc; 2005 Sep; 127(36):12544-54. PubMed ID: 16144402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMR crystallography of campho[2,3-c]pyrazole (Z' = 6): combining high-resolution 1H-13C solid-state MAS NMR spectroscopy and GIPAW chemical-shift calculations.
    Webber AL; Emsley L; Claramunt RM; Brown SP
    J Phys Chem A; 2010 Sep; 114(38):10435-42. PubMed ID: 20815383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 1H chemical shifts in NMR. Part 20--anisotropic and steric effects in halogen substituent chemical shifts (SCS), a modelling and ab initio investigation.
    Abraham RJ; Mobli M; Smith RJ
    Magn Reson Chem; 2004 May; 42(5):436-44. PubMed ID: 15095379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A general 13C NMR spectrum predictor using data mining techniques.
    Le Bret C
    SAR QSAR Environ Res; 2000; 11(3-4):211-34. PubMed ID: 10969872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural Message Passing for NMR Chemical Shift Prediction.
    Kwon Y; Lee D; Choi YS; Kang M; Kang S
    J Chem Inf Model; 2020 Apr; 60(4):2024-2030. PubMed ID: 32250618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substitution patterns in aromatic rings by increment analysis. Model development and application to natural organic matter.
    Perdue EM; Hertkorn N; Kettrup A
    Anal Chem; 2007 Feb; 79(3):1010-21. PubMed ID: 17263329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simple method for identification of skeletons of aporphine alkaloids from 13C NMR data using artificial neural networks.
    Rufino AR; Brant AJ; Santos JB; Ferreira MJ; Emerenciano VP
    J Chem Inf Model; 2005; 45(3):645-51. PubMed ID: 15921454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of neural network simulator for structure--activity correlation of molecules (NECO). Prediction of endo/exo substitution of norbornane derivatives and of carcinogenic activity of PAHs from 13C-NMR shifts.
    Isu Y; Nagashima U; Aoyama T; Hosoya H
    J Chem Inf Comput Sci; 1996; 36(2):286-93. PubMed ID: 8882811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.